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Nomenclature

Latin Characters

a speed of sound

minor axis of ellipse

b major axis of ellipse

c phase speed

Ai,j forcing amplitude in jth z-mode with frequency i .w

e eccentricity

E energy

hi weight factors

ft relative Mach number

Ma Mach number

p pressure

q heat flux

Q vortex identification variable

R radius

RN nose (tip) radius

Re global Reynolds number

R. square root of local Reynolds number based on x

R6 Reynolds number based on boundary-layer thickness 6

t time

T temperature

u, v, w velocity in the (x, y, z) directions

U, V, W base-flow velocity in the (x, y, z) directions

vp disturbance profile velocity

x, y, z streamwise, wall-normal, spanwise directions (Cartesian grid)
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Nomenclature- Con tin ued

Greek Characters
a wave number in the x-direction

half-cone opening angle

ai growth rate

/3 wave number in the spanwise direction

shock wave angle

A entropy-layer thickness

6 boundary-layer thickness
* displacement thickness

-Y ratio of specific heats

A wavelength

P kinematic viscosity

(D) phase shift

¢ arbitrary variable

I' wave angle

p density

T- viscous stress

O momentum thickness

w angular frequency

vorticity

7, V/, 9 streamwise, wall-normal, spanwise directions (curvilinear coordinates)
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Nomenclat ure-Continued

Modifiers

0 vector

101 absolute value

disturbance quantity

dimensional variable

magnitude

reference state of variable (free-stream value)

00 critical layer

Oin inflow value

01, boundary layer edge values

¢O.t outflow value

0 1 generalized inflection points values

Ot total value

Owall value at the wall

OIO,70Z with reference to the (x, y, z) direction

Frequent Abbreviations

BC Boundary Condition

DNS Direct Numerical Simulation

LST Linear Stability Theory

ODE Ordinary Differential Equation

PSE Parabolized Stability Equations

TDNS Temporal Direct Numerical Simulation

TPS Thermal Protection System

TS Tollmin Schlichting

TVD Total Variation Diminishing
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Abstract

This work focuses on instability mechanisms of high-speed boundary layers over

flat plates and cones with a circular cross section. Supersonic transition investiga-

tions at Mach 2 and hypersonic transition investigations at Mach 8 are performed

using Direct Numerical Simulations (DNS). At wind-tunnel conditions, these simu-

lations allow for comparison with experimental measurements to verify fundamental

stability characteristics. For the DNS of boundary-layer transition at Mach 2, the

experimental studies by Kosinov et al. (1994) and Ermolaev et al. (1996) for a flat

plate serve as reference and provide the physical conditions for the numerical setup.

In these experiments, the weakly nonlinear regime of transition was studied resulting

in the discovery of asymmetric subharmonic resonance triads. Scrutinizing the exper-

imental data, reveals however the presence of another, possibly competing breakdown

mechanism, in the experiments. Both mechanisms were addressed in detail in this

work.

To better understand geometrical influences, flat-plate and cylindrical geometries

are studied under after-shock conditions of the conical investigations (experiments).

This allows for a direct comparison with the results of the sharp cone to evaluate the

influence of spanwise curvature and cone opening angle. The ratio of the boundary

layer thickness to the spanwise radius is used to determine the importance of spanwise

curvature effects. For a cone, in downstream direction the radius increases linearly

while the boundary layer thickness stays almost constant. Hence, spanwise curvature

effects are strongest close to the nose tip and decrease in downstream direction. Their

influences on the secondary instability mechanisms provide some preliminary guidance

in the design for future high-speed air vehicles.

In experiments, blunting of the nose tip of the circular cone results in an increase

in critical Reynolds number (c.f. Stetson et al. (1984)). However, once a certain

threshold is exceeded, the critical Reynolds number decreases even to lower values

than for the sharp cone. Conclusive answers could not be obtained based on the
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available experimental data. Therefore, DNS are used to study the effect of nose

bluntness on secondary instability mechanisms to shed light on the underlying flow

physics. To this end, three different nose radii are considered - a sharp cone, a

small nose radius and a large nose radius. A small nose radius moves the transition

on-set downstream, while for a large nose radius the so-called transition reversal is

observed. Experimentalists link the different stability behavior resulting from the

different nose radii to the entropy layer. Detailed numerical studies allow for an

alternate conclusion.
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1. Introduction

1.1 Motivation

The sonic boom is a firm indicator for the change in flow physics when passing Ma = 1.

With that, the design concepts of air vehicles change drastically at supersonic speeds.

Aircrafts traveling at low supersonic speeds have sharp edges and noses in order

to reduce the wave drag of shocks. Advancing to hypersonic speeds, thermal loads

become increasingly dominant over the wave drag. Since the heat transfer is inverse

proportional to the radius (q,au - V ),'air vehicles are designed with large radii

to protect the fuselage from over-heating.

In principal, transition to turbulence plays a key factor of the aerodynamic per-

formance of a vehicle. For supersonic and hypersonic flows, transition is additionally

associated with an increasing heat transfer to the vehicle. Usually the heat loads

during transition exceed the heat transfer of even fully turbulent flows. Therefore,

understanding the stability behavior of high-speed boundary layers is essential for the

design of the vehicle and the successful operation during its missions. The exploitation

of instability mechanisms can delay the transition process and reduce associated heat

loads, therefore enhancing the performance of the vehicle and reduce weight penalties

for the thermal protection system (TPS). Especially at high Mach numbers, the

reduction of the aerothermal loads may result in a significant weight reduction, thus

increasing the payload of the air vehicle.

The flow over cones with circular and elliptical cross-sections is an important step

towards the modeling of real vehicle geometries. Nose sections of vehicles traveling

at supersonic speeds are similar in shape to circular cones. Thus understanding the

governing flow physics for this geometry helps improve real-scale vehicle performance.

Although significant progress has been made in recent years, crucial aspects of

transition physics are still not well understood. The lack of insight into the physical
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mechanisms of the transition processes in supersonic and hypersonic boundary-layer

flows is a major obstruction in developing reliable transition prediction methods. In

this study, Direct Numerical Simulations (DNS) are used to elaborate the influences

of nose radii and spanwise curvature on the hypersonic transition process. These

simulations have the advantages of being highly accurate and cost efficient compared

with experiments. Despite the fact that the complex flow structure of compressible

boundary-layer flows still challenges today's supercomputers, DNS help identify vi-

able paths to transition and will narrow the gap between simulations and real-life

applications.

For comparison and validation purposes, other approaches to stability investi-

gations are introduced in the next two sections before secondary instabilities are

discussed and experimental and computational efforts are summarized.

1.2 Transition Process and Breakdown Scenarios

Classically, the transition process depicted in Figure 1.1 can be divided into five

stages:

I. Receptivity:

9 Disturbances from surroundings penetrate the boundary layer.

II. Linear region:

• Amplitudes of these disturbances grow exponentially.

III. Secondary instability:

" Once finite amplitude are reached, higher modes are generated nonlinearly and

flow becomes increasingly three-dimensional.

" Lambda vortices with peak and valley stations are formed through streamwise

vortices with higher amplification at the peak station.
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IV. Tertiary instability:

* Hairpin vortices evolve from the lambda vortices whose heads start to break up

into smaller structures.

" Turbulent spots are generated.

V. Turbulent region:

* Agglomeration/Merging of turbulent spots form fully turbulent region.

V
IV

Figure 1.1: Stages of the transition process (side and top view).

The transition process is non-unique and does not necessarily involve all of the above

mentioned stages (bypass transition). Because Mach number has stabilizing effects

hypersonic boundary layers are very stable. This work concentrates on the nonlinear
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regime of transition to identify scenarios which cause the final breakdown. Therefore,

a composition of known (secondary) instability mechanisms follows. Herbert (1988)

summarizes the secondary instabilities of incompressible boundary layers- K-type,

C-type and N-/H-type. He investigated secondary instabilities by the Floquet analysis

and compared his findings with experiments.

Secondary instabilities occur when waves travel at the same phase speeds thus

enabling energy transfer from the primary to the secondary waves which results in

rapid growth of the secondary waves and eventually in breakdown to turbulence.

The different scenarios are:

K-type: Klebanoff et al. (1962) discovered this instability in their flat-plate ex-

periments. A finitc amplitude two-dimensional Tollmien-Schlichting (TS) wave inter-

acts with a steady streamwise vortex generated by spanwise spacers. Small (linear)

amplitude three-dimensional waves at the same frequency as the primary wave (fun-

damental breakdown) emerge through nonlinear interactions. The finite amplitude

of the primary wave is responsible for a phase locking with the secondary (gener-

ated) waves and therefore enabling this resonance. This breakdown results in aligned

streamwise A-vortices producing a peak-valley formation in spanwise direction with

similar wavelength than the two-dimensional fundamental wave , z- A,.

C-type: Craik (1971) investigated a resonant triad where all three waves involved

travel at the same phase speed. The two-dimensional fundamental wave has twice the

frequency of the two secondary oblique (subharmonic) waves. To achieve equality of

the phase speed the oblique waves travel at a specific wave angle (Az.subh = 2Ax,fund).

It is not necessary for the two-dimensional fundamental waves to reach finite am-

plitudes in order to transfer energy to the oblique waves, thus causing early rapid

amplification. Because there exists only one specific wave triad for each frequency of

the primary waves, this resonance is not as robust as the N-/H-type breakdown.

N-type or H-type: In a subharmonic breakdown, a finite amplitude two-dimensional

wave leads to a resonance with a small (linear) amplitude three-dimensional wave with
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half the frequency of the two-dimensional (primary) wave. These secondary oblique

waves travel at different wave angles as in a C-type breakdown making the C-type a

special case of the N-/H-type secondary instability. The flow field shows staggered

streamwise A-vortices with a spanwise wavelength half of the streamwise wavelength

of the fundamental wave (2A, = A,). Experiments by Kachanov & Levchenko (1984)

and theoretical work by Herbert (1984) revealed the associated spanwise variations of

the subharmonic disturbance waves. For an incompressible flat-plate boundary layer,

the subharmonic breakdown is usually a stronger mechanism than a fundamental

(K-type) breakdown, despite the fact that it has been discovered over 20 years later.

Oblique Breakdown: In his numerical investigations of supersonic flows, Thumm

(1991) first discovered this mechanism which is not a secondary instability in the

common sense. A pair of oblique waves traveling with the same wave angle in oppo-

site directions relative to the flow (+i) generate a pair of steady streamwise vortices.

These vortices interact with the primary disturbance waves again causing rapid am-

plification of nonlinearly generated waves. The oblique breakdown works especially

well when three-dimensional waves are more unstable than two-dimensional waves

which is the case at low supersonic Mach numbers (Ma < 4).

Oblique Subharmonic Resonance: This secondary instability is a generalization of

a C-type breakdown where the fundamental waves are also oblique. Therefore, the

primary and the two subharmonic waves all travel at different wave angles in order

to form a wave triad. This breakdown was observed in experiments performed by

Kosinov et al. (1994). As for the oblique breakdown, this resonance works best at

low supersonic Mach numbers since the eigenbehavior of the waves further support

this breakdown.

Oblique Fundamental Resonance: Just as the oblique subharmonic resonance is a

generalization of a C-type breakdown, the oblique fundamental resonance is a gen-

eralization of a K-type resonance where the primary and the secondary waves are

three-dimensional. Both waves involved possess the same frequency but travel at



38

different wave angles. As for the K-type, steady streamwise vortices are generated

through first-order interactions. So far, only minor attention was drawn to this kind

of breakdown.

1.3 Common Methods for Stability Investigations

1.3.1 Linear Stability Theory

For his extensive numerical investigations, Mack (1984) split the total flow into a

steady (base) flow and an unsteady disturbance flow. He then linearized the equations

and applied the normal-mode approach for disturbance waves which assumes the

amplitude to only vary in wall-normal direction:

¢ = d(y)et(ax+6z - wt). (1.1)

Because the amplitude is not allowed to vary in x-direction, a so-called local flow

analysis (parallel-flow assumption) is accomplished. Further simplification of the

governing equations is possible if one of the dissipation terms of the energy equation,

is set to zero thus decoupling the energy equation from the z-momentum equation.

The result is a system of six (instead of eight) first order ODEs. He justified this step

by comparison of the results obtained with both eighth order and sixth order systems

and concluded that the error of the sixth order system of about 14% is acceptable

due to a tremendous reduction in computation time when compared with results of

the eighth order system.

1.3.1.1 Inviscid Theory

In contrast to incompressible flow, the compressible boundary layer may be unstable

to inviscid disturbances due to a generalized inflection point where
1_ 2 w ' u) &dtL' = 0

I (C, L _ -0 y
0 + dy Hdy]d
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within the boundary layer. The distance from the wall of the generalized inflection

point is denoted y, and the local speed of the fluid is labelled cs.

When the velocity of the flow within the boundary layer is the speed of sound

slower than the free-stream velocity, the derived equations become singular. This

so-called critical layer appears at the wall-normal location yo where the speed of the

flow is co = 1 - 1/Ma (Note: Yo and co are both functions of the downstream direc-

tion). Whenever y, > Yo, the supersonic boundary layer flow is unstable to inviscid

(subsonic) disturbances. This inviscid instability becomes stronger with increasing

Mach number.

According to Lees and Lin (c.f. Mack (1984), page 3-35), disturbance waves are

classified by their speed relative to the free-stream velocity:

D supersonic disturbance c < 1 - __
Ma

generalized

P sonic disturbance c 1 - inflectionMa
point profiles

io- subsonic disturbance c > 1 - IMa

• regular disturbance 1 < c < 1 + a no inflection point

It should be noted that generally the most important waves with respect to the

stability of a compressible boundary layer are subsonic disturbances. Exceptions, e.g.

in the presence of strong wall cooling where amplified disturbance waves are found in

the regular disturbance family, are discussed later in this section.

When a relative Mach number ( (QU + /3W- w) Mal (V/(,2 ± 32)T)) is

introduced and large wave numbers considered the simplified compressible Rayleigh

equation

d2p 2 +202) (1 p =o
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shows that an infinite number of solutions exist if M/> 1. The only requirements

for these higher modes to exist is a relative supersonic flow region within the boundary

layer. This relative supersonic flow appears when Ma > 2.2 in the inviscid theory

(Re --+ oo). The higher modes are also called Mack modes because Mack (1965)

was the first to discover their importance in the stability behavior of supersonic

flows, although Lees & Reshotko (1962) mention their possible existence earlier. The

most important Mack mode for Mach number up to ten is the second mode. First

and higher modes can be best distinguished by the number of phase shifts of their

pressure eigenfunction (number of zero crossings in their amplitude distribution). The

mode under consideration shows one null less than its mode number-so the pressure

amplitude eigenfunction of a first-mode disturbance wave has no zeros and the second

mode has one.

For an insulated wall, amplified first modes travel with a phase velocity between

co and c,. For three-dimensional (first-mode) waves traveling with a wave angle T,

the flow properties in direction of the wave are important-thus Cs3D = Cs2D COSkP

and Co3D = (cosTP - 1/Ma). Therefore, larger wave angles T increase the difference

between c, and co up to an optimum, and three-dimensional first-mode waves are

destabilized (Note: the optimal wave angle is a function of Mach number). Three-

dimensional higher mode waves are more stable than two-dimensional higher mode

waves so that at low supersonic speeds three-dimensional first-mode waves are most

unstable while, at higher Mach numbers, two-dimensional second-mode waves are

most amplified. This statement is generally valid although exceptions are possible in

both cases.

When the wall is moderately cooled, a second inflection point appears below the

critical layer and does therefore not introduce an additional instability. With in-

creased cooling the second inflection point is moving upward, cancelling the general-

ized inflection point and thus totally stabilizing first-mode waves. At the same time

higher modes which travel with a higher velocity than the free stream (regular dis-
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turbance waves) are destabilized. No general stability tendency of wall cooling can

therefore be observed and its effect on the transition process has to be examined for

each case separately.

1.3.1.2 Viscous Theory

Going to finite Reynolds numbers, i.e. accounting for viscous effects, increases the

Mach number when higher modes first appear. Typically, the second mode emerges

at Ma - 4 under wind-tunnel conditions. Another important difference to the in-

viscid theory is that the first and higher mode waves are not distinguished waves

any longer. In the viscous theory, all waves traveling with c < 1, i.e. supersonic,

sonic, and subsonic disturbances are linear independent to the regular disturbance

waves traveling at c > 1. Nonetheless, the viscous stability behavior of a compress-

ible boundary layer is basically governed by subsonic waves as in inviscid theory.

Within that category, waves behave like first-mode or higher-mode waves depending

on the flow parameters. Mack (1984) calls these waves "the viscous counterpart of

an inviscid first mode wave" (or inviscid higher mode). In order not to unnecessarily

complicate the manner, the viscous counterparts are still called first mode or higher

modes in this report-knowing that it is the same wave with different characteristics.

For an insulated wall, first-mode waves of low supersonic Mach numbers (Ma < 2)

experience a viscous instability, i.e. waves are more amplified than according to the

inviscid theory. But with increasing Mach number, viscosity only acts to damp the

inviscid instability of waves (caused by the generalized inflection point). Viscous

dissipation increases with increasing wave number a and decreasing local Reynolds

number R,. Therefore, all higher modes are stabilized by viscous effects.

The effects of wall cooling for finite Reynolds numbers show similar behavior as in

the inviscid theory. Thus, first modes are fully stabilized by eliminating the inflection

point through strong wall cooling.
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1.3.2 Parabolized Stability Equations

Since computations and experiments are compared to results obtained by the Parab-

olized Stability Equations (PSE), a brief overview is given here. For a more detailed

description, the reader is referred to Chang & Malik (1993a). First, one distinguishes

between linear and nonlinear PSE. In comparison to LST, linear and also non-linear

PSE has the major advantage that influences of the growing boundary layer are

considered (no parallel-flow assumption). Additionally for nonlinear PSE, a limited

amount of nonlinear interactions of waves are allowed.

In order to include non-parallel and nonlinear effects, PSE uses a multiple-scale

approach to decompose a disturbance in streamwise direction into a wave-like part

(varying wave number) and a shape function (varying amplitude function ¢(x, y)).

M N

¢= Z Z
m=-M n=-N

Plugging this approach into the governing equations, with neglecting second-order

derivatives (e.g. -- and multiplications of first-order derivatives (e.g. in the

streamwise direction, eliminates the elliptic nature of the equations- they are parab-

olized. By eliminating the elliptic character no information can be passed upstream

anymore and these equations are therefore only capable of calculating convective in-

stabilities. Because non-parallel and nonlinear effects are not neglected, transition

on-set and the early stages of transition can be computed in very good agreement

with experimental results. Hence, PSE is a powerful tool for investigating the early

stages of transition but performs less good in predicting flow behaviors in the later

stages of the breakdown process.
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1.3.3 Temporal Direct Numerical Simulations

In the wave equation (eq 1.1), a and w are generally complex. The real parts a,

and wr are the wave number and frequency, respectively. The imaginary parts both

describe the amplification of the wave, i.e. ai is the spatial while w, is the tempo-

ral amplification. For the spatial approach, which is mainly used in this work, a

is complex and w is real. To discuss possible resonances of disturbance waves, in-

vestigations are also performed with a temporal DNS. In the temporal simulations,

only one streamwise wavelength is computed. The resulting computational domain is

graphed in Figure 1.2. Because of its small streamwise extent the flow variables are

assumed to be constant in that direction. Hence, the base-flow profile and with that

the boundary-layer thickness, does not change and periodicity is assumed (parallel

flow assumption, as in LST). The computational domain travels with the wave speed

and therefore, the wave becomes stationary within the reference frame. Based on this

approach, temporal amplification can be computed and related to spatial amplifica-

tion rates with the transformation by Gaster (1962). For a more detailed description

of the temporal approach, please refer to Marxen (1998). Balzer (2003) describes the

temporal code used for the investigations of conical geometries.

r

F 2a ot -(anr B er2

Figure 1.2: Computational domain for temporal DNS (taken from Balzer (2003)).
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1.4 Earlier Investigations of High-Speed Boundary-Layer Stability

1.4.1 Experimental Efforts

1.4.1.1 Flat-Plate and Swept-Wing Geometry

At the Institute of Theoretical and Applied Mechanics in Novosibirsk, Russia, con-

trolled experiments of flow over a flat plate at Ma = 2 were investigated. These

controlled experiments, meaning that disturbances are introduced by a generator at

specific frequencies (here via a spark discharge), were performed by Kosinov et al.

(1994). Their main finding is that a resonance of oblique subharmonic waves exists.

Theoretical work of Kosinov & Tumin (1996) confirmed this result. Ermolaev et al.

(1996) used a larger subharmonic amplitude than Kosinov et al. (1994) resulting in

a slightly different wave triad-possibly not caused by the amplitude but by a phase

difference in their disturbance signal (c.f. Mayer & Fasel (2008)). They measured an

asymmetric spectra in spanwise direction which could not be theoretically verified. So

Ermolaev et al. (1996) speculated that this asymmetry is connected to the generation

of subharmonic two-dimensional sound waves.

Brown & Graziosi (2002) investigated the disturbance development within a flat-

plate boundary layer at Mach 3. They elaborated only the linear stages of transition

caused by natural disturbances, i.e. noise radiated from the free stream into the

boundary layer. The initial stages of transition were generally confirmed by LST.

Graziosi (1999) claimed that first-mode unstable waves are sonic wave disturbances

and play therefore a main role in the transition process. Therefore, follow-up ex-

periments (Brown & Fan (2003)) with controlled disturbances which are introduced

through a loudspeaker upstream of the wind-tunnel nozzle are used to investigate

the receptivity of the boundary layer to sound-wave disturbances. The experiments

revealed that disturbance waves in the free stream travel initially in phase with the

generated disturbance waves in the boundary layer. At a later time (at the same
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location), a phase shift between waves in the free stream and in the boundary layer

became apparent.

When three-dimensional boundary layers are considered, so-called cross-flow in-

stabilities govern the stability of the flow. To investigate these cross-flow instabilities,

swept-wings, rotating disks, and elliptical cones are common geometries. In the fa-

cility in Novosibirsk, Levchenko et al. (1996) found formations of steady streamwise

vortices caused by the cross-flow instability of an infinite swept wing at Ma = 2.

Saric & Reed (2002) investigated the cross-flow instability of a swept wing at Mach

2.4. They were successful in delaying transition by placing distributed roughnesses

close to the leading edges in order to weaken the cross-flow instability. Therefore, it

is concluded that steady vortices are an efficient mechanism in controlling cross-flow

instabilities.

1.4.1.2 Cone Geometries

Circular Cone

Most experiments of conical geometries are performed in the hypersonic Mach

number range of Ma = 6 to Ma = 8 before the shock. An exemption are the exper-

iments of Corke et al. (2002) who also found an oblique subharmonic resonance, as

Kosinov et al. (1994) did for a flat plate at Ma = 2, for a slender cone at Mach 3.5.

Laddon & Schneider (1998) analyzed the stability behavior of controlled disturbances

(introduced via a glow discharge) in a flow over a circular cone for small angles of

attack at Ma = 4. They measured a phase speed of 0.9 times the free-stream ve-

locity and saw the maximum rms-amplitude values built up at the outer part of the

boundary layer- both indications that a second-mode instability is present. They

speculated that although amplitude growth was significant the disturbance amplitude

of the glow discharge was too small in order to cause transition.

The best documented and most detailed experiments of a circular cone geometry
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are probably those of Stetson et al. (1983) and Stetson & Kimmel (1992). They inves-

tigated the influences of nose radius, wall temperature, angle of attack, unit Reynolds

number, Mach number, and transverse curvature. Independent of these factors, higher

harmonics of the most amplified wave developed. In their early experiments, Stetson

et al. (1983) focused on the sharp cone at Mach 8 at one unit Reynolds number. The

principle instability was identified as a two-dimensional second-mode wave which is

selective to a specific disturbance frequency. The wavelength of this frequency relates

to the boundary-layer thickness (A. -z 2 - 3). Since the boundary-layer thickness is

almost constant for this cone configuration, the most amplified frequency does not

vary as much in downstream direction as it does e.g. for the flat plate. Measured

rms-amplitudes grow close to the boundary layer edge and stay at about noise level

at the inner part of the boundary layer close to the wall. Far downstream these

second-mode disturbance waves decay and first-mode waves grow again leading to

the conclusion that transition on-set has occurred.

Nose Bluntness: In later experiments, Stetson et al. (1984) showed that a small

nose-tip bluntness can completely control the stability behavior of the hypersonic

boundary layer, i.e. a small bluntness delays transition while larger nose radii enhance

transition compared to the sharp cone. So he hypothesized that the stability behavior

at the frustum of the cone is governed by the entropy layer and the boundary-layer

edge properties because once the entropy layer was "swallowed" by the boundary

layer, disturbances rapidly amplified again. Stetson (1979) named the reduction in

unit Reynolds number due to total pressure losses over the normal-shock region the

main reason for the downstream movement of the transition location for a small to

moderate nose bluntness. For larger nose radii transition occurred in the subsonic

region of the boundary layer and transition moved forward again.

Wall Temperature: Because second-mode disturbance waves are dominant, a de-

crease in wall temperature increases the amplification of these waves and reduces the

critical Reynolds number.
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Angle of Attack: The transition point on the windward site of the cone was found

to move rearward and forward on the leeward site. The forward movement of the

transition on-set can be explained by a cross-flow instability. However, the major

effect of an angle of attack was on the location of the amplification of a second-mode

disturbance but not on the amplification rate itself.

Unit Reynolds number: The experimental data revealed a linear correlation of

unit Reynolds number and the amplification rate of a second-mode disturbance. Thus,

for a particular downstream location based on local Reynolds number, the amplifica-

tion rate was twice as high if the unit Reynolds number was doubled.

Mach number: Comparison of the collected data at Mach 8 with data at Mach 6

showed basically the same stability behavior in both cases.

Transverse curvature: Quiet wind-tunnel data support the numerical results of

LST that the location of a second-mode disturbance is somewhat farther upstream

but the amplification rate is lower for a compressible flat-plate boundary layer com-

pared to conical flows. The reason for such a behavior lies in the above mentioned

selectivity of the frequency of the conical boundary layer so that overall a second-mode

instability is emphasized for flow over cones.

Bountin et al. (2004) and Shiplyuk et al. (2003) analyzed the flow around a circular

cone with a porous wall. They concentrated their work on mode interactions through

the bispectral method and found that a subharmonic resonance of two-dimensional

waves with three-dimensional waves is possible. In addition, they emphasized the im-

portance of first-mode oblique waves alone in the breakdown process- like breakdown

scenarios with oblique primary waves.

Flared Cone

On a flared cone the radius increases quadratically in the downstream direction,

usually after a linear portion along the nose section of the cone (as on a conven-

tional cone). Associated with the resulting concave curvature are G6rtler vortices

and adverse pressure gradients.
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At the NASA Langley Research Center, the flared cone at Ma = 6 was analyzed

by a group of researchers around Chokani. Lachowicz et al. (1996) found that second-

mode two-dimensional waves dominate the transition process while higher harmonics

are unrelated to the free-stream disturbance levels- further undermining the results

of Stetson et al. (1983). Doggett et al. (1997) saw the same trends for a flared cone

at an angle of attack as for the conventional cone, i.e. the leeward side became

more unstable and the windward side was stabilized compared to a cone at a zero

degree angle of attack. From 1999 through 2002, Chokani (1999), Chokani (2000a),

Chokani (2000b), Norris & Chokani (2001), and Norris & Chokani (2002) emphasized

their experimental efforts on the identification of nonlinear interactions leading to

transition. They claimed a subharmonic resonance of a two-dimensional second-

mode wave with three-dimensional first-mode waves responsible for boundary layer

transition.

Horvath (2002) investigated both cone geometries, the conventional slender cone

and a flared cone. He postulated that the adverse pressure gradient instead of G6rtler

vortices is the main driving force for higher amplification rates of second-mode dis-

turbances over the flared cone. Hence, the breakdown mechanisms involving two-

dimensional waves are emphasized for the flared cone compared to flow over cones

without streamwise curvature.

Elliptical Cone

Kimmel et al. (1999) investigated the three-dimensional boundary-layer flow over

a cone with elliptical cross-section (ratio 2:1) at Mach 8. Their measurements revealed

that inflection-point profiles are present close to the centerline where the boundary

layer is also significantly thicker than away from the centerline. With the laminar

state of the flow already very complex, they could only speculate that transition at

the centerline is caused by the inflection point while close to the shoulder of the cone

transition is induced by cross-flow instabilities. The instability of the inflectional

boundary layer seemed to be stronger than the instability of the cross flow so that
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transition occurred first at the centerline and farther downstream at the shoulder of

the cone. Continuing work of Poggie et al. (2000) revealed second-mode disturbance

waves close to the centerline of the elliptical cone. It remained unclear if disturbances

caused by cross flow or first-mode waves are present at the shoulder of the cone.

According to Poggie et al. (2000), a minor identification which favors the presence of

cross-flow instabilities is that the measured wavelength was rather short. Because the

group velocity vector of leading-edge disturbances did not deviate more than 1 degree

off the edge velocity vector, they hypothesized that oblique leading edge disturbances

do not play an important role in the stability behavior at the shoulder of the cone.

Although the amplitudes under investigation were too high for a receptivity study,

Schmisseur et al. (2002) saw a response to thermal disturbances generated by a laser

placed in the free stream close to the shoulder of their 4:1 elliptic cone at Ma = 4.

Future research remains to clarify more specific issue of their stability experiments.

1.4.2 Computational Efforts

1.4.2.1 Flat-Plate and Swept-Wing Geometry

Since the early 90's, when Thumm (1991) discovered the oblique breakdown for a su-

personic boundary layer at Mach 1.6, simulations performed by several investigators,

see for example Bestek I Eller (1996), Chang & Malik (1994), Fasel et al. (1993)

or Mayer (2004), also showed that this breakdown of two oblique waves with the

same wave angle (±41) is a strong mechanism in the on-set of transition for various

Mach numbers and flow parameters. Unfortunately, this breakdown lacks experimen-

tal verification so far, although Mayer et al. (2007) has strong indications of a possible

oblique breakdown in the experimental measurements of Ermolaev et al. (1996).

EiBler (1995) performed computations under wind-tunnel, so-called "cold", con-

ditions and free-flight, so-called "hot", conditions with an adiabatic, isothermal, and

radiation-cooled wall and was therefore capable of determining realistic heat loads on
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the wall during transition. His simulations with an adiabatic and radiation-cooled

wall revealed that the oblique breakdown is the strongest mechanism for "cold" con-

ditions at Ma = 4.8. With the same wall behaviors but under atmospheric ("hot")

conditions, two-dimensional second-mode waves were strongly amplified. For a fun-

damental breakdown (K-type) secondary three-dimensional waves showed relevant

amplitudes level only far downstream and a N-/H-type subharmonic resonance could

not be found. Due to the computer power at that time, he was unable to simulate

K-type or N-/H-type breakdown scenarios with an isothermal wall. It is our hy-

pothesis that the second-mode waves were highly destabilized (as predicted by LST)

and early transition occurred. Therefore, he summarized that the oblique breakdown

for an adiabatic flat-plate boundary layer is the strongest mechanism within his in-

vestigated scope of parameters-despite the strong amplification of two-dimensional

second-mode waves.

Theoretical work of Tumin (1996) and Terekhova (2003) analyzed the experiments

of the oblique subharmonic breakdown by Kosinov et al. (1994). Tumin (1996) used

50 wave packets in a locally parallel flow uniformly spaced in spanwise direction and

found good qualitative agreement to the experiments. Based on his findings, he con-

cluded that a subharmonic resonance is responsible for the stability behavior of the

flow. Terekhova (2003) investigated the nonlinear interactions with seven waves-

only considering first-order interactions. She found that there are strong interactions

between the fundamental waves (traveling at ±T) generating a two-dimensional wave

(Remark: as in the oblique breakdown), but also stated that the first-order interac-

tions are not the main process in the energy re-distribution among waves. Husmeier

et al. (2005) transferred the subharmonic oblique breakdown to Mach 3 flow con-

ditions matching the experimental setup of Brown & Graziosi (2002). But due to

the arising flow structures and instability mode behavior, they concluded that, al-

though possible, an oblique breakdown was overlaying the subharmonic resonance.

They also investigated K- and N-/H-type breakdown scenarios but because of the
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high disturbance amplitudes necessary at the disturbance slot, their conclusion was

that the oblique breakdown is the strongest mechanism under those conditions. With

his numerical efforts, Zengl (2005) focused on the oblique subharmonic resonance of

Kosinov et al. (1994) under the conditions of Brown & Graziosi (2002). His simula-

tions showed that only two waves, i.e. one primary and one secondary wave pair, need

to be disturbed while the third wave closing the triad is automatically generated and

amplified through nonlinear interactions. Therefore, the oblique subharmonic insta-

bility is strongest when both, primary and secondary, waves are perturbed with equal

amplitudes. In this case, the oblique subharmonic breakdown shows competitive

performance to the oblique breakdown.

Chang et al. (1995) investigated the stability behavior of a three-dimensional

boundary layer by performing a PSE analysis of flow over a swept cylinder at Ma =

3.5. Stationary cross-flow vortices evolved with unsteady (high-frequency) cross-flow

disturbances residing on top of these structures. Because of the very high frequency of

these disturbances they speculated that traveling cross-flow instabilities rather than

an instability of the steady vortices are more likely to govern the stability behavior.

Similar results saw Kloker (2002) for an incompressible swept-wing geometry. He

related the unsteady cross-flow disturbances to the free-stream turbulence level. At

low free-stream turbulence levels stationary cross-flow vortices prevailed.

1.4.2.2 Cone Geometries

Circular Cone

Theoretical work by Seddougui & Bassom (1997) who investigated the linear sta-

bility behavior of flow over cones following the triple-deck-formulation, revealed the

importance of the shock location relative to the cone radius. Only looking at viscous

modes they stated that inviscid instabilities might alter their findings. Seddougui &

Bassom (1997) revealed that with increasing radius, i.e. moving in downstream direc-
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tion, first-mode waves are higher amplified than higher-mode waves- a phenomenon

already observed by Stetson et al. (1983) in their experiments. Additionally, Sed-

dougui & Bassom (1997) stated that with the shock moving away from the cone

surface amplification rates generally drop and axisymmetric waves are more unstable

than oblique waves.

Using DNS and PSE, Pruett et al. (1995) investigated a second-mode three- di-

mensional linear disturbance under the conditions of Stetson et al. (1983). Comparing

DNS with PSE results showed good agreement. Pruett et al. (1995) recognized an

extreme sensitivity of the stability behavior of high-speed boundary layer flows to

changes in the base-flow profiles. Therefore, Pruett (1993) concentrated on the in-

fluence of the wall-normal gradients of the flow variables within the boundary layer.

In a second part, Pruett & Chang (1995) investigated breakdown scenarios in more

detail. They found that subharmonic resonances (N-/H-type) are an unlikely path to

turbulence since the downstream extent of the instability region of two-dimensional

waves is too short. Instead, they claimed a second-mode oblique breakdown with

arising steady vortices responsible for transition. These structures having a signifi-

cant impact on the stability behavior formed closed to the critical layer. Robarge &

Schneider (2005) linked the sensitivity of the stability behavior of the boundary layer,

as seen by Pruett et al. (1995), to changes in the viscosity. Thus, they observed a

large scatter in computed amplification rates although the location of the instability

region was in good agreement when compared with PSE results. Fezer & Kloker

(2004) also investigated the same cone geometry as used in the experiments by Stet-

son et al. (1983) but under atmospheric conditions, i.e. a "hot" approach flow, and

with a radiation-cooled wall. A fundamental resonance (K-type) with accompanying

hot streaks along the wall initiated transition in that case. The high temperature

streaks along the wall resulted from vortex structures which built up during this

breakdown. Zhong (2005) analyzed three different nose radii under Stetson's experi-

mental conditions (c.f. Stetson et al. (1984)). Zhong (2005) observed a shift to lower
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dominant frequencies with increasing bluntness due to a thickening boundary layer.

But as reported by Stetson & Kimmel (1992), Zhong (2005) was unable to find an

instability reversal, i.e. in his simulations the critical Reynolds number increased

monotonically with increasing nose radius. In the experiments of Stetson & Kimmel

(1992) a decrease in critical Reynolds number followed the initial increase so that

there was an optimal nose radius regarding transition delay in the their experiments.

In all cases mentioned above, the authors were unable to draw conclusions on

why the observed instabilities prevailed over other mechanisms and what role the

boundary and flow conditions play in influencing these scenarios.

Flared Cone

Pruett & Chang (1998) continued their transition investigation by analyzing the

flared cone geometry at Ma = 6. Due to the flared region on the cone, the boundary

layer thickness decreases and the dominating disturbance frequencies increase. As

observed by Stetson et al. (1983), they were able to link the wavelength of the most

important frequency to about twice the boundary-layer thickness. For a flared cone,

flow structures developed close to the wall and upstream of those on the circular cone

(c.f. Pruett & Chang (1995)). Generally, Pruett & Chang (1998) saw the transi-

tion on-set appearing earlier but developing more gradually in downstream direction

in comparison to the development on the circular cone. But if Mach number, ad-

verse pressure gradient, streamwise wall curvature, or unstable G6rtler vortices are

responsible for this behavior is unclear.

Elliptical Cone

Kimmel et al. (1997) performed precursor simulation of flows over cones with three

different elliptical cross sections before starting their experiments (c.f. Kimmel et al.

(1999)). Their eccentricities were 1.5 : 1, 2 : 1, and 4 : 1. Due to the large amplitude

growth on the centerline close to the nose of the cone with the 4 : 1-cross section,

early transition on-set was observed influencing transition on the shoulder of the cone.

Because breakdown mechanisms cannot be easily distinguished for this configuration
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(4 : 1), they excluded this geometry from their experimental investigations (c.f. Kim-

mel et al. (1999)). Martin et al. (2000) tested the subgrid-scale turbulence model

in comparison with DNS results. Follow-up simulations performed by Martin et al.

(2001) demonstrated grid resolution requirements but no stability investigations were

performed.

1.5 Objectives and Overview

Because of the aforementioned difficulties from which experimental investigations of

hypersonic boundary layer transition suffer, many questions are left unanswered. Es-

pecially the absence of controlled disturbance input makes it harder to single out

specific wave interactions and therefore it is very difficult if not almost impossible

to draw conclusions on the physical mechanisms of the relevant breakdown scenar-

ios. Therefore, DNS are employed to identify and investigate breakdown scenarios

for high-speed boundary-layer flows over circular cones. To get an as complete pic-

ture as possible on how transition is initiated breakdown scenarios of first-mode and

second-mode waves, two-dimensional and three-dimensional (primary) waves and the

influence of steady streamwise vortex modes are studied for each geometry. How

geometrical parameters, with special focus on spanwise curvature and nose radius,

influence the stability behavior is elaborated.

To give confidence into the simulations and to assure the correct implementation

of the governing equations and numerical procedure, presented in chapter 2 and 3

respectively, a summary of performed validation cases is composed in chapter 4.

The diameter of the cone varies in downstream direction. To discuss the effects of

spanwise curvature on the hypersonic boundary layer transition and create a data

base for later comparison with the circular cone results of the investigated breakdown

scenarios, results for the flat-pate and cylinder geometry are presented in chapter 5

and chapter 6. Experimental investigations by Stetson et al. (1984) have revealed a
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critical nose radius. Numerical efforts by Rosenboom et al. (1999) and Zhong (2005)

were unable to confirm this stability feature. To further elaborate the influences of the

nose radius breakdown scenarios for the sharp cone (chapter 7), for a small (chapter

8), and a large nose radius (chapter 9) are discussed and compared with each other.

Main discoveries are concluded in chapter 10.
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2. Governing Equations

The Navier-Stokes equations consisting of conservation of mass (continuity equation),

conservation of momentum, and conservation of total energy form the set of governing

equations for the high-speed transition investigations. Air as thermally and calori-

cally ideal gas is assumed so that the equation of state is used to close the set of

equations. This assumption limits the temperature within the flow field to below

2,000K, because, above that temperature, dissociation sets in voiding the ideal gas

assumption. Hence, the investigations are based on "cold" wind-tunnel conditions

where the adiabatic wall temperature does not exceed 1,000K. Because no further

assumptions are incorporated all non-parallel and nonlinear effects are included.

2.1 Viscosity

The fluid is assumed to obey the Newtonian viscosity law governed by the local

temperature T*. Note, that for investigations over the cone, the viscosity is computed

with the local temperature T* after the shock. The viscosity, depending on the

temperature T*, is constant, shows linear behavior or is obtained by Sutherland's

Law, J C1IT , T*<TI
C1T* ,TI < T * < T2 (2.1)

C2 T.3/2 T * >T*

with
TI* = 40.0K C1 = 6.8070 x 10-Ns/m2K
T = 110.4K C 2 = 1.4458 x 10-6 Ns/m2 K 1 / 2 .

For the investigations presented in this work, the temperature ranges from below

110.4K to above 110.4K so that the viscosity is computed linearly in the free stream

and with Sutherland's Law in the boundary layer. This switching of viscosity laws

causes a small discontinuity (see Figure 2.1a). Figure 2.1b shows the wall-normal



57

distance where the discontinuity occurs in comparison with the boundary layer thick-

ness, the location of the generalized inflection point y, and the location of the critical

layer yo. Because the maximum amplitude of amplified disturbance waves is located

between y, and Yo, the discontinuity does not influence the stability behavior (see also

chapter 4 (Code Validation)). To eliminate this discontinuity, the functions have to
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(a) Viscosity with respect to fluid temper- (b) Wall-normal location of discontinuity
ature. in relation to base-flow properties.

Figure 2.1: Sharp Cone. Ma =7.95, Re -- 3, 333, 333, Too = 53.35K.

be continuous and smooth, i.e. function values and their derivative at the interface

have to match. Both conditions result in the same relationship between C1 and C2

C=2 'C 1  (2.2)

so that one of the coefficients C 1 or C2 is still arbitrary.

2.2 Non-dimensional Equations

Non-dimensionalization of the governing equations is carried out by using a length

scale (the length of the test article in the experiments L*) and free-stream values of

velocity, temperature, density, and specific heat (Uro, Tio, Pe and C2, respectively).

For investigations of flows over cones, free-stream values before the shock are used for
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non-dimensionalization. The non-dimensionalization removes all explicit dependence

on these parameters with the exception of the temperature T*, since it is used to

calculate the viscosity (see preceding section 2.1).

To allow for the simulation of cones with circular and elliptical cross section, an

orthogonal curvilinear coordinate transformation is introduced (see Tannehill et al.

(1997)). The rectangular Cartesian coordinates (of the computational domain) are

related to the curvilinear coordinates by

X = X ,
y = W,7, p) (2.3)

z =

The differential arc length ds can be represented in both coordinate systems- in

Cartesian coordinates simply through Pythagoras in three dimensions

ds2 = dx 2 + dy 2 + dz2  (2.4)

and in curvilinear coordinates with

ds 2 = (h, d) 2 + (h2 dr) 2 + (h3 d p) 2 . (2.5)

The resulting hi-factors are listed in appendix A. Figure 2.2 illustrates the Cartesian

and the resulting curvilinear (body-fitted) coordinate systems for the cone geometry.

With the help of equation 2.5, gradient, divergence and product of vectors can be

defined and substituted into the governing equations. This transformation causes

(additional) source terms in the -, q- and yo-momentum equations, and therefore

the governing equations are not strongly conservative. But the computational ef-

fort is greatly reduced compared to a (strongly conservative) generalized coordinate

transformation and therefore chosen for this investigation.

For further simplification, the Mach number Ma and the Reynolds number Re are

introduced as

Ma= U____ U POO
00 0 Re-
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I'P

Figure 2.2: Curvilinear coordinate transformation.

With the help of these derivations the governing equations can be sorted by their

derivatives along the coordinate axes and the so-called vector form is obtained:

01U 1 Ph 2h3E Oh1 h3F Oh1 h2G -
Ot + hi h2h3 [ O + an + 0 + HI = 0. (2.6)

All vectors and coefficients for the different geometries under investigation can be

found in appendix A.
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3. Numerical Method and Simulation Setup

A spatial DNS model is used with a fourth-order Runge-Kutta method for time-

advancement and "fourth-order" split finite differences in the x- and y-directions.

However, an analysis of the modified equation indicates that this spatial discretiza-

tion is formally only third-order accurate (see Harris (1997)). In the z-direction, a

periodic solution is assumed and, consequently, a Fourier transformation is applied.

Variables are symmetric over one-half of the spanwise wavelength (except for w, which

is antisymmetric over this distance), thus only half a wavelength in the z-direction

needs to be computed. For the conical/cylindrical geometries, the "wavelength" is the

azimuthal angle p, which has to be an integer fraction of a full circle. For the cylinder

and circular cone, different sizes of the cross-sectional wedge can be computed (for

this work the wedge ranges from 27r/8 to 2 T/24). But for simulations of an elliptical

cone, half the cross section (o -- ) has to be chosen because only two symmetry

planes, i.e. one along the vertical and the second one along the horizontal centerline

are present. The numerical method is explained in detail in the dissertation of Harris

(1997).

3.1 Initial Condition

To obtain an initial condition (IC) precursor simulations are performed with a for-

mally second-order accurate Total Variation Diminishing (TVD)-upwind scheme. In

these simulations the entire flow field including the conical shock wave is computed

(as can be seen in Figure 3.1). Thus exact consistency with the experimental set-up,

e.g. influences of the nose radius, is achieved. Because the TVD-upwind scheme is

very robust, so it is capable of capturing the shock, it is for the same reason not

suitable for boundary-layer transition simulations. Hence, a two-step procedure is

employed where the domain of interest is extracted from the precursor simulation
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Figure 3.1: Initial condition.
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Figure 3.2: Schematic of transferring data from the precursor simulation to the com-
putational domain for transition investigations.

and serves as an initial condition for the investigations of stability and transition.

This procedure is schematically depicted in Figure 3.1. Because the domain of inter-

est is a smaller sub-domain of the entire flow field, high resolution can be achieved

for accurate investigations of stability and transition.

3.2 Computational Domain

The domain, on which the boundary-layer transition simulations are performed, is

illustrated in Figure 3.3. The domain starts at xi, and ends at x"", covering the

region of interest from a transitional point of view. The upper limit of the domain

remains below the shock allowing the usage of more accurate and efficient numerical

schemes. Disturbances are introduced through a slot located between x, and X2 . A

more detailed description of the disturbance generation can be found in section 3.7.
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Figure 3.3: Computational domain.

3.3 Inflow Boundary Condition

At the inflow boundary, all values are fixed using the initial solution (from the precur-

sor simulation or from the similarity solution for flat-plate and cylinder investigations)

with the exception in the subsonic region close to the wall where the pressure is com-

puted by
Q=0. (3.1)0

Because the temperature T and the density p are fixed, the equation of state is violated

in this subsonic region. However, upstream-traveling sound waves are allowed to pass

through the boundary with only weak reflections. This allows the disturbance slot to

be located close to the inflow.

3.4 Free-Stream Boundary Condition

3.4.1 For the Base Flow

A boundary condition based on characteristics after Thompson (1987) is implemented

with an additional term which determines the reflectivity of the boundary condition

after Kim & Duck (2000). Thompson (1987) assumed an inviscid flow at the boundary

of the domain which can be diagonalized in wall-normal direction. The governing
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equations (2.6) with p = 0 are translated to primitive variables p, u, v, w, p and

eigenvalues Ai with related eigenvectors of the matrix Q in equation (3.2) are found.

OU QOaF---- + QaF+ C= 0, (3.2)

where C contains the summation of the source terms, -, and p-derivatives. If A < 0,

the wave is incoming and A > 0 represent outgoing waves. For the slender cone

geometries under investigation the free stream is a subsonic inflow with only one of the

five waves traveling outward. For the outgoing wave, properties can be computed from

grid nodes within the domain while for the incoming waves boundary conditions have

to be modeled. Therefore, an ambient state from the initial condition is stored and

used to extrapolate properties for the incoming waves with regard to the surroundings.

This is a valid approach because the correct streamwise and wall-normal gradients are

already known from the initial condition (precursor simulation). Hence, no further

models are needed to simulate the boundary condition. The scheme to compute the

free-stream boundary condition is so far second order accurate. A more detailed

mathematical derivation and description can be found in the literature of Thompson

(1990) and Kim & Duck (2000).

3.4.2 For the Disturbance Flow

An exponential decay condition is applied when disturbances are introduced. The

total flow approaching the free-stream boundary is split into a steady (base flow) and

an unsteady part (disturbances). While the steady part is fixed, disturbances are

assumed to decay exponentially in wall-normal direction. Although the Mach wave

emanating from the disturbance slot and hitting the free-stream boundary travels

along a characteristic, the exponential decay condition results in lower domain heights

without influencing the disturbance waves inside the boundary layer. Therefore, the

computational domain for the transition investigations can be placed closer to the
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nose of the cone using this boundary condition. Further discussion is provided in

Thumm (1991) and Terzi (2004).

3.5 Outflow Boundary Condition

Assuming that a small-amplitude sinusoidal wave hits the outflow, the condition

02 0 2 f (3.3)

allows the disturbance waves to pass the boundary with minimal reflections. Experi-

ence has shown that treating the outflow boundary by applying
020

-0 (3.4)

to all conservative variables works equally well unless 0 < 0, or if [11 is near zero.

Therefore, a buffcr domain is used for nonlinear disturbance calculations where dis-

turbances are ramped down and the base flow is recovered. The length of the outflow

ramp should be about two wavelengths of the largest high-amplitude wave under

consideration in order to minimize upstream effects of this boundary condition.

3.6 Wall Boundary Condition

3.6.1 For the Base Flow

An adiabatic, no-slip, no-penetration wall boundary condition is applied. Hence, all

velocity components are zero at the wall. In order to simulate a wall without heat

transfer a Neumann condition is applied to the temperature:

0 . (3.5)07

The wall pressure PwaLl is calculated from the wall-normal momentum equation. This

equation, as derived from equation (2.6), in the y-direction is

(hh 3 p) _ p h3 h h2h3a' + A(h2h3TC,) - 0 [hlh 3 (p+ -2 T L) (hh 2 T, )
9h2 + hi 8h2 Oh _h

(3.6)
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Since the base flow is steady, the time derivative term in the momentum equation is

zero.

3.6.2 For the Disturbance Flow

All velocities are still zero except for the v-velocity in the region where disturbances

are introduced through the blowing and suction slot (see Figure 3.3). The time

derivative in the momentum equation for the perturbed flow cannot be neglected

over the disturbance slot. Instead is computed with

9pv _ t v -P + p . (3.7)

The term Op/ot is computed with the continuity equation and the term 0y/vt is

analytically computed from equation (3.8). The wall BC for the temperature switches

from adiabatic to isothermal because the temperature fluctuations are too "fast" to

influence the wall temperature. This way, the physics of a wind-tunnel flow are best

captured due to the inertia of the wall regarding high-frequency disturbances.

3.7 Disturbance Generation

Harmonic disturbances are introduced by periodic blowing and suction through a

slot in the wall, located about one TS wavelength downstream of the inflow (see

Figure 3.3). All other boundary conditions are not affected. Note, that the pressure

boundary condition (equation (3.6)) is valid for a non-zero wall-normal velocity. The

perturbed velocity v is given as

v( , t) = A(t)v,( ) sin(wt - 4), (3.8)

which is a harmonic function with (disturbance) frequency w and time-dependent

amplitude A(t). In this study, the amplitude is ramped up over the first period

beginning at t = 0 with and held constant subsequently. In addition, no mass flux
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is going into the flow due to the prescribed spatial disturbance profile vp(x) which is

a fifth order polynomial simulating a dipole so that predominantly vorticity modes

are excited. For generating steady longitudinal vortices, steady forcing through a

monopole after Meitz (1996) is applied in the v-velocity over the same disturbance

slot as used for the harmonic forcing. Although no mass flux is globally introduced

into the flow, the base-flow profiles change locally depending on the disturbance

profile.
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4. Code Validation

4.1 Flat Plate

The code originally developed by Harris (1995) to investigate plane supersonic wakes

has been intensively tested for various applications over the past years. Terzi (2004)

investigated subsonic backward-facing steps and implemented to that end several

turbulent models. Husmeier (2002) investigated the non-parallel effects of a super-

sonic boundary layer at Mach 3, while Mayer (2004) studied the effects of adverse

streamwise pressure gradients at Ma = 3. Zengl (2005) concentrated on the oblique

subharmonic resonance at Mach 3 as discovered in the Mach 2 experiments by Kosinov

et al. (1994). Mayer et al. (2007) performed in-depth comparison with experimental

measurements by Kosinov (2006), further validating the accuracy of the code and its

capability to capture flow conditions and instabilities present under wind-tunnel con-

ditions. Please refer to the latter references for validation cases with LST and exper-

imental data at moderate supersonic speeds. Based on its excellent performance, this

code was chosen for the numerical investigations of transition at hypersonic speeds.

Because no validation at hypersonic speeds was performed in our group so far, a brief

comparison of a flat-plate boundary layer at Mach 6.8 is presented before further

validation cases are discussed for conical geometries in the following section.

To this end, the stability behavior of a small-amplitude two-dimensional second-

mode wave is compared with LST. The physical parameters for the computational

setup are chosen to match "cold" wind-tunnel conditions (c.f. Stetson et al. (1983)),

i.e. the Mach number is 6.8, free-stream temperature and pressure are 71K and

415.56Pa, respectively. The wall is assumed to be adiabatic with isothermal distur-

bances. The domain of interest (red line) is graphed in the stability diagram (see

Figure 4.1a) at a frequency of F = 8 -10- , which is chosen because a region of

highest amplification is passed. The amplitude is di,sen to be A1,0 = 0.01% in order
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to exclude nonlinear effects and therefore better compare with LST. Effects of the

growing boundary layer (non-parallel effects) are still simulated in the DNS which

are also neglected for the LST (c.f. section 1.3.1). Across the unstable region, Figure

4.1b shows good agreement of the amplification rates obtained by DNS with LST

once the wave has developed downstream of R, = 1, 400. The deviation of the DNS

from LST is small and within the margin of other publications (c.f. e.g Thumm

(1991) or Eibler (1995)). Therefore it is believed that the correct stability behavior

is simulated.
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(a) Linear Stability Diagram. (b) Amplification rate plot.

Figure 4.1: (a) Linear stability diagram for two-dimensional waves at Ma = 6.8,
T = 71K, adiabatic wall. (b) Amplification rate comparison of DNS with LST at
F = 8. 10-

5.

4.2 Sharp Cone

To verify the implemented coordinate transformation, numerical results are compared

with experimental measurements and other numerical investigations. The compari-

son of base-flow profiles with experimental measurements (c.f. Stetson et al. (1983))

in Figure 4.2a shows an overall close agreement. The insert in Figure 4.2a compares

experimentally measured and computed boundary-layer thickness 6 because it is used
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to normalize the ordinates in the graphs of Figure 4.2. The discrepancies with the

experimental data might be due to the uncertainties in the measurements considering

the excellent agreement between the base-flow profiles from our simulations and from

those performed by Pruett et al. (1995) and Fezer & Kloker (2004) (c.f. Figure 4.2b).

As seen from Figure 4.3, good agreement is also achieved for the growth rates of small-

amplitude disturbance waves. The amplification rate based on maximal temperature

disturbances of a second-mode two-dimensional wave lies within a few percent of the

PSE results by Chang & Malik (1993b) and the DNS results by Fezer & Kloker

(2004) validating our numerical simulations. It is hypothesized that the two DNS do

not match each other exactly because of the different methods of how the base-flow

quantities are derived. Fezer & Kloker (2004) use a Mangler transformation of a flat-

plate similarity profile, which neglects spanwise curvature effects, and superpose an

Euler solution to obtain the streamwise gradients. As stated in section 3.1 the whole

flow field is simulated without those assumptions for the current investigations. For
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2 UI.l

UL 
u*lO Pn

2BL - - Tl"

TU o

DNS '. DNS
PDNS T TDNS
T DNS

025 05 075 i125 2 I 0 I 2 3 4 5 6 7 8 9 0 II 12 13 14

(a) Experiments (c.f. Stetson et al. (1983)) (b) Simulations (c.f. Pruett et al. (1995);
at R. = 2048. Fezer & Kloker (2004)) at R. = 1742.

Figure 4.2: Base-flow comparison. Ma = 7.95, Re = 3,333,333, T)C = 53.35K.

a further validation the wall pressure distribution for second-mode two-dimensional

waves is compared with experimental measurements in Figure 4.4, including different



70

oool Wow i (]0

- DNS (F-IK,kIo, (1004))
LST (R., & Kiokcr (2004))
LST (Ch.. & Mk (1993))
PSE (Ch.X & M.fik (1993))

-DNS
-0001 .

I -/ II A '0-000 1-10'

A1lI
0.0 - 16

-0,003 4 A=I 16

A= 10''
, 
20

2=_0 160 1,)
200I 00 Ao 160 00 00 18100 1600 18M0 200

R. R
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0.001%.

disturbance amplitude levels of two-dimensional waves and a second-mode oblique

wave at a small wave angle. Comparing the two-dimensional waves, amplitudes lev-

els up to 0.1% overlap each other, matching the experimental measurements up to

R., = 1,900. When the disturbance amplitude level is further increased higher har-

monics of the disturbance waves cause the amplitude levels of the fundamental waves

to decrease. To this end, a disturbance amplitude of 0.5% matches the experimen-

tal data best leading to the conclusion that moderate nonlinear amplitude levels are

present in the natural transition process of the experiments by Stetson et al. (1983).

The three-dimensional wave plotted in Figure 4.4 outlines the possibility that, in-

stead of the assumed two-dimensional waves, second-mode oblique waves at small

wave angles might also be present in the experiments. This fact underlines the prac-

tical significance of the breakdown scenarios with oblique primary waves discussed in

chapter 7 and chapter 8.
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4.3 Blunt Cone (RN = 0.15")

Stetson et al. (1984) increased the unit Reynolds number of the experiments for

cones with different nose radii. To exclude possible Reynolds number effects, DNS

are therefore performed with a Reynolds number of Re = 8, 566, 826 in order to match

the unit Reynolds number of the experiments (Re/ft = 2, 500, 000). Results for the

nose radius RN = 0.15" are chosen for validation. For that case, base-flow velocity

profiles of different downstream locations are graphed in Figure 4.5. Because these

base-flow profiles have a positive du/d?r even in the free stream it is numerically hard to

determine the boundary layer edge values and with that the boundary layer thickness.

This stands in contrast to the sharp cone where the streamwise velocity is decreasing

outside of the boundary layer in wall-normal direction, i.e. there is a maximum

velocity in wall-normal direction for the sharp cone. Figure 4.6 shows how sensible

the boundary layer thickness reacts to different percentages of boundary-layer edge

velocity. Because the boundary-layer thickness based on 99.5% of the edge velocity

matches best the experimental measurements, those values are used for normalization
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Figure 4.5: Base-flow profiles of stream- Figure 4.6: Boundary-layer thickness.
wise velocity at different downstream Comparison of experimental measure-
locations. Comparison of experimen- ments and numerical simulations. Ma =
tal measurements and numerical simu- 7.99, Re = 8,566,826, T" = 54.47K.
lations. Ma = 7.99, Re = 8,566,826,
T_, = 54.47K.
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in Figure 4.5. Within the experimental uncertainties, Figure 4.5 and Figure 4.6

agree well. Even better confirmation of capturing the correct instability behavior of

the hypersonic flow is achieved when looking at a simplified general inflection point

criterion for different downstream locations (Figure 4.7). The numerical results and

experimental data agree very well except for the most upstream location. This can

be linked to the difficulties in defining the boundary-layer thickness in presence of an

entropy layer. Close to the nose, when the entropy layer has not been swallowed yet

by the boundary layer, it is hard to distinguish between entropy layer and boundary-
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Figure 4.7: Simplified generalized inflection point. Comparison of experimental data
and numerical simulations. Ma = 7.99, Re = 8,566,826, T. = 54.47K.
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layer thickness. In Figure 4.6, the boundary-layer thickness computed with 99.5% of

edge velocity incorporates the entropy layer and is therefore over-estimated resulting

in the discrepancies in the wall-normal direction for the most upstream location in

Figure 4.7. When the experimentally determined boundary layer thickness is used for

normalization, the profile agree as well as the farther downstream locations. In order

to eliminate the uncertainty if the correct boundary-layer thickness is captured, results

are compared with numerical simulations performed by Rosenboom et al. (1999).

They analyzed the effect of nose bluntness under the experimental condition of Stetson

et al. (1984) through local and non-local linear instability theory. A comparison with

their dimensional velocity and temperature base-flow profiles are graphed in Figure

4.8. Both profiles for the two downstream locations match-giving confidencc in the

numerical results. The small differences may be due to a coarser resolution in their

simulations of Rosenboom et al. (1999). Zhong (2005), also performed numerical

investigation of the effect of nose radius on the receptivity behavior of the conical

boundary layer. Unfortunately, results are only plotted for one downstream location

which exceeds the experimental test model length (and also the computational domain

used for this validation) so that a comparison is not possible.

NSCC - Roo,~..I99 NSCC

R -. A (, -. 1 . 0

O 0000 200 300 400 500 600 700
uln/s TIKI

(a) Streamwise velocity. (b) Temperature.

Figure 4.8: Comparison of base-flow profiles with numerical efforts by Rosenboom
et al. (1999) for two downstream locations. Ma = 7.99, Re = 8,566,826, T, =

54.47K.
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5. Transition Investigations of a Boundary Layer on a Flat

Plate

5.1 Supersonic Flow at Mach 2

The early nonlinear stages of transition in a supersonic boundary layer at Mach

2.0 were investigated using spatial Direct Numerical Simulations (DNS). The com-

putational setup matches earlier experimental studies by Kosinov et al. (1994) and

Ermolaev et al. (1996), where transition was triggered by localized forcing leading

to the development of a wedge-shaped wave train. While the focus of these exper-

iments had been on a new breakdown mechanism, called asymmetric subharmonic

resonance, the experimental data indicates the presence of another, possibly compet-

ing mechanism. With the simulations presented here, two fundamental questions were

addressed. First, does this new breakdown mechanism, visible in the experimental

data set from Ermolaev et al. (1996), has any characteristics of oblique breakdown

(Fasel et al., 1993), a mechanism never observed in any experimental investigation

before? And second, if oblique breakdown indeed occurs in these experiments, what

role does it play for supersonic boundary-layer transition at Mach 2 when compared to

asymmetric subharmonic resonance, the mechanism that was considered by Ermolaev

et al. (1996) to be dominant? In order to answer the last question the subharmonic

transition route was studied in detail. A similar subharmonic resonance mechanism

as observed in the experiments was also visible in the present work. Additionally,

several other resonance triads can be identified using Linear Stability Theory (LST)

and DNS. The selection process for a specific triad is not influenced by the amplitude

ratio of fundamental and subharmonic disturbances as proposed by the experimental-

ists (Ermolaev et al., 1996), but by the phase relation between disturbances of both

frequencies.
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5.2 Physical Problem and Computational Setup

Supersonic flow at Ma = 2.0 over a flat plate is investigated numerically using spatial

DNS. The computational setup is designed to allow for a direct comparison of the

DNS results with the experimental measurements by Ermolaev et al. (1996). The unit

Reynolds number is Re = 6.6 x 106 m- ' and the free-stream temperature is T" =

160K. The mean flow in the DNS is very close to the compressible similarity solution

for Ma = 2.0. In earlier investigations by Kosinov et al. (1990), the mean flow profile

in their experiment also matches the similarity solution for a Ma = 2.0 boundary

layer. Therefore, it can be assumed that the experiment (Ermolaev et al., 1996) and

the DNS presented here are performed under the same mean flow conditions.

As illustrated in figure 5.1, the flat-plate model used by Ermolaev et al. (1996)

had a length of 0.45m and a width of 0.2m. Disturbances were generated by a glow

discharge (harmonic point source) in an electrical discharge chamber placed inside the

flat plate and penetrated the flow through a hole with a diameter of 0.42mm at x* -

0.038m. In order to minimize computational cost, the extent of the computational

domain for the DNS discussed here covers only a portion of the experimental setup,

as indicated by the box placed on top of the flat plate in figure 5.1. The inflow

of the domain is located 0.02m downstream of the leading edge of the plate (xo =

0.02m), while the outflow is placed at x - 0.11m or x4 - 0.18m, depending on

the purpose of the simulation (parameter study or final simulation). The domain

height of yH :- 0.035m - 346 (at the outflow) or y* - 0.02m ,- 245 (according to

the domain length) has been sized such that disturbance reflections from the free-

stream boundary into the domain of interest are prevented (figure 5.2a). A spectral

discretization is employed in the spanwise direction of the computations and, as a

result, the single disturbance generated by the glow discharge in the experiments is

replaced by a periodic series of localized disturbances spaced one fundamental wave

length apart, A, = z v = 0.063m. This wave length corresponds to a fundamental
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spanwise wave number of /3* = 27r/z* = 0.lmm - '. The domain width z, has been

chosen large enough that adjacent disturbances do not interact with each other inside

the computational domain (figure 5.2b). In fact, computational cost is reduced even

further by enforcing symmetry with respect to the z* = 0.0 plane; thus, in effect,

restricting the simulation to the interval [0, z*v/2 A*/2].

(a) (b)
1.0

' , 0.0

X. PX -1.0

X, X2

Figure 5.1: Comparison of experimental flat-plate model (HxLxW = 10 x 450 x
200mm) with the computational domain.

As indicated in figure 5.1, time-harmonic disturbances with the fundamental fre-

quency of 20kHz and the subharmonic frequency of 10kHz are introduced through

blowing and suction slot located between x* - 0.029m < x* < x 0.038m

(x* - x* 0.7A 2 D of the fundamental frequency). The subharmonic frequency and

therefore, the subharmonic resonance triad investigated by Kosinov et al. (1994) and

Ermolaev et al. (1996) has been deliberately excluded in some DNS (CFUND 1-5) in

order to focus only on the nonlinear wave interactions at 20kHz. With these sim-

ulations, the question whether oblique breakdown appears in the experiments could

be addressed. For simulations of the subharmonic resonance triad (CSUB 1-10), the

flow was also perturbed with the subharmonic frequency. Since the forcing method

in the simulations differs from the experiment, a calibration procedure is required for

adjusting the spanwise distribution of the disturbance input in the DNS such that

the flow response downstream of the forcing location closely matches that from the

experiment. A detailed description of this procedure is provided in section 5.3.1.
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Figure 5.2: Computational setup: (a) Contours of disturbance pressure (20kHz) with
the spanwise wave number /3 = .mm - ' indicating that reflections from the free-
stream boundary reach the near wall region inside the buffer domain downstream
of the region of interest, (b) contours of disturbance pressure (20kHz) at the wall
showing that the disturbances do not reach the spanwise boundaries.

The computational grid for all simulations has been stretched in wall-normal di-

rection and for certain simulations the mesh size in streamwise direction was reduced

near the outflow (figure 5.3a). Only weak grid stretching has been employed in order

to avoid any grid dependence of the numerical solution. The number of grid points re-

quired in streamwise direction is determined by the domain length and the streamwise

wave length of the evolving instability waves. The streamwise domain extends across

12 wave lengths of a two-dimensional instability wave with frequency 20kHz (in the

linear stage). One wave length is resolved with about 27 points inside the equidistant

grid region before the resolution is increased towards the outflow. The wall-normal

grid resolution has been determined using as a guideline the shape of the wall-normal



78

amplitude distribution for the u-velocity disturbance in the linear stage. As an exam-

ple, a small portion of this wall-normal distribution is illustrated in figure 5.3b for the

case of frequency 20kHz, spanwise wave number /3 = 0.5mm -1 and the streamwise

position x* = 0.06m. For spanwise wave numbers close to /3 = 0.5mm - ', a small

second amplitude maximum appears near the wall, which, in this case, is resolved

by 6 points. Disturbances with the subharmonic frequency do not exhibit such a

behavior in the linear stage.
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Figure 5.3: Computational setup: (a) Grid in streamwise direction for a simula-
tion with equidistant grid (-) (CFUND 1-4 and CSUB 1-10) and a simulation with
increased resolution near the outflow (- -) (CFUND 5), grid in wall-normal direc-
tion for all simulations (...) discussed here, (b) symbols indicate grid locations used
to resolve the second maximum of the wall-normal amplitude distribution for the
u-velocity disturbance with 20kHz (M-M) and its corresponding wall-normal phase
distribution (.- -. ) at the spanwise wave number /3 = 0.5mm -1 and the streamwise
position x* = 0.06m.

5.3 Identification of oblique breakdown

A difficulty that arises when setting up simulations to match the experiment by Er-

molaev et al. (1996) is the implementation of the disturbance generation into the

Navier-Stokes solver. The diameter (0.42mm) of the hole in the plate model used in

the experiment is far too small for being properly resolved in a DNS. In the present
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numerical simulations, the disturbances are therefore introduced into the computa-

tional domain by forcing the v-velocity through a blowing and suction slot at the

wall. The application of this very different disturbance generation can be justified if

the evolving instability waves are in the linear regime since their eigenbehavior does

not depend on the details of the wave generation. Important are only the resulting

amplitude and phase of the different spanwise Fourier modes contained within the

disturbance developing immediately downstream of the disturbance slot. Therefore,

a receptivity study has been performed in order to determine what spanwise am-

plitude and phase distribution of the v-velocity over the disturbance slot produces

the same flow response as the localized forcing technique used in the experiment.

Since the experimental data are not known at the forcing location, a position nearby

(x* = 0.06m) serves as a reference location for the receptivity study. The modeling

of the harmonic point source with the blowing and suction slot leads to a broad span-

wise forcing spectrum. This forcing method differs from previous investigations of

the oblique breakdown by Thumm (1991), Fezer & Kloker (1999) and Husmeier et al.

(2005), where only one discrete wave pair was forced and only the higher-harmonic

spanwise modes of this waves were included in the simulations.

The results of the receptivity study are presented in the next section. Following

the receptivity study, DNS results for the linear regime (low disturbance amplitude)

are compared to data obtained from LST and experimental data by Kosinov (2006)

at x* = 0.06m in order to verify the validity of the numerical setup and the appli-

cation of the different disturbance generation. Results of the early nonlinear regime

are discussed in the succeeding sections. Here, the focus is on answering the two

previously raised questions: Can oblique breakdown be identified in the experiments

and if oblique breakdown indeed occurs, what role does it play when compared to

asymmetric subharmonic resonance. To answer the first question, DNS have been

performed, where only the fundamental frequency was perturbed, resulting in a de-

liberate exclusion of the subharmonic resonance triad.
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5.3.1 Receptivity Study

A receptivity study has been performed for the fundamental frequency (20kHz).

Disturbances of this frequency still exhibit a linear behavior up to the streamwise

position x* = 0.06m in both, the experiment and the DNS. The experimental data

employed as a reference for the receptivity study have been provided by Kosinov

(2006) and were obtained using hot-wire measurements at the wall-normal location

y*16* = 0.53. The raw measurement data consist of the disturbance voltage over the

mean voltage (e*)'/E* measured at various spanwise locations extending from z* =

-11.2mm to z* = 7.3mm. The experimental data exhibit a slight asymmetry with

respect to z* = 0.0. Since the computational setup is symmetric with respect to z* =

0.0, only half of the experimental data points have been considered as a reference for

the receptivity study (from z* = 0.0 to z* = 11.2mm in figure 5.4). The measurement
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(a) Spanwise amplitude distribution. (b) Spanwise phase distribution.

Figure 5.4: Spanwise amplitude (a) and phase (b) distribution (20kHz) of normalized
output signal (e*)'/E* (disturbance voltage over mean voltage) measured by a hot-
wire anemometer in the experiment at streamwise location x* = 0.06m and wall-
normal location y*/6* = 0.53: (0) experiment (Kosinov, 2006), (-) interpolated by a
cubic spline.

data have been extended up to z* = zw*/2 - 0.0315 using additional data points

with zero amplitude and zero phase, then interpolated onto an equidistant grid with
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n, = 161 points, and finally transformed into Fourier space using a symmetric FFT

(figure 5.5).

The raw hot-wire output signal can be related to mass-flux and temperature fluc-

tuations in the flow. The temperature fluctuations are assumed to be small (Kosinov,

2006) and therefore, the mass-flux disturbance can be directly calculated according

to
(p*u*)/ W K(e) (5.1)

(P*U*) E*

(figure 5.5a). Here, the calibration factor K depends on many parameters, e.g. the

temperature loading factor of the hot-wire. For the present experimental data, its

value is approximately 1/0.27 (Kosinov, 2006). In the hot-wire measurements, the

mass-flux disturbance (figure 5.5a) is measured relative to the local mean mass flux

(p*U*) at the measurement location (x*, y*) = (0.06m, 0.536*). The DNS data, on the

other hand, are normalized by the free-stream value at the inflow boundary, (p*U*),,.

Therefore, as a final step, the measured mass-flux disturbance has been rescaled by

(p*U*)I(p*U*). - 0.5 so that the resulting amplitude distribution (figure 5.5a) can

now be compared directly to the DNS data. As seen from figure 5.5a, the absolute

disturbance amplitude at the reference location x* = 0.06m is small enough that the

disturbance development from the forcing location up to x* = 0.06m is assured to be

linear. This is necessary for the justification of the very different disturbance method

(blowing and suction slot) employed in the simulations.

Having established the spectral composition of the disturbance at x* = 0.06m

measured in the experiment, the receptivity study for matching up the DNS with

this data proceeds as follows. In a first simulation (CFUND 1), disturbances with

the same fundamental frequency of 20kHz as in the experiment are introduced by

time-harmonic blowing and suction with a very low (linear) amplitude. At this point,

the proper spectral distribution of the forcing amplitude A(,3) and phase 0(/3) for the

v-velocity that would lead to a match with the experimental data is still unknown.
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Therefore, as a first guess, both A(3) and 0(63) are kept constant over all spanwise

Fourier modes, as indicated by the dotted lines in the amplitude and phase distri-

bution plots of figure 5.6. The amplitude and phase distribution at the reference

location x* = 0.06m of the disturbance that is generated by this type of forcing are

also plotted in figure 5.6 as solid lines. Clearly, the DNS data do not match the

corresponding experimental data points. However, considering that the disturbance

development is linear, the appropriate forcing amplitude A(3)"' for the v-velocity

can now be calculated from the ratio of the amplitude distributions from experiment

and DNS in figure 5.6a

A(O)ne eE (13) ieXP (PU)'('3 = 0.0)IDNS, (5.2)(eY' ('3 = 0.0) (PU)'(3)

and the appropriate phase 0(,3)n,w from the difference of the corresponding phase

distributions in figure 5.6b

0(3)l '
W = 0(1/31,, _ o(O)1DNs. (5.3)

The new forcing amplitude and phase distribution are plotted in figure 5.6 as the

curves marked by stars and also in figure 5.7 as dotted lines. When using this adjusted

forcing in a second DNS (CFUND 2, low forcing amplitude), the new simulation

results match the experimental data almost exactly, as seen from figure 5.7. Note, the

data in figure 5.7a are normalized by the amplitude value of the mass-flux disturbance

at 3 = 0.0

The experimental data in figure 5.7 (Kosinov, 2006) have been transformed into

Fourier space by a full Fourier series expansion specified in Ermolaev et al. (1996).

Therefore, the experimental data are not entirely symmetric with respect to 13* =

0.0. The difference in the Fourier series expansion is also responsible for the small

discrepancy between the phase distributions in figure 5.7(b). The experimental data,
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Figure 5.5: Spanwise amplitude (a) and phase (b) distribution (20kHz) of normal-
ized output signal (e*)IE* from figure 5.4 transformed into Fourier space using
a symmetric FFT: (-) output signal of hotwire, (--) mass-flux disturbance non-
dimensionalized. by mean values measured at y*/b* =0.53, (U) mass-flux disturbance
non-dimensionalized by mean values measured in the free stream.
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Figure 5.6: Spanwise amplitude (a) and phase (b) distributions (20kHz) of mass-
flux disturbance (pu)' at wall-normal location y*16* = 0.53 and streamwise location

x*= 0.06m: ( ... ) Forcing (v-velocity over the disturbance slot) applied in the DNS,
(H response of mass-flux. disturbance due to the forcing in the DNS, (U) experimental
data, (*) calculated using equation (5.2) and (5.3).



84

when transformed by a symmetric FFT in figure 5.5, match the numerical results in

figure 5.7b exactly.

We close this section by providing an impression of the flow structures that develop

over the disturbance slot in response to the blowing and suction at the wall with the

amplitude and phase distribution shown in figure 5.7 as dotted lines. In figure 5.8,

the flow response to this disturbance method is illustrated by isosurfaces of the v-

velocity disturbance for different time instants. It is clearly visible that the resulting

disturbance over the blowing and suction slot (indicated as a dark bar in figure 5.8)

is highly localized in the DNS, just as the glow discharge in the experiment. The two

different shades for the isosurfaces distinguish between the sign of the v-velocity. The

larger structures travel along the Mach wave towards the free stream whereas smaller

downstream travelling structures develop close to the surface.

5.3.2 Linear Behavior

The receptivity study from the previous section provides a tool for matching the

flow response to the localized forcing technique applied in the experiments for the

fundamental frequency (20kHz). This matching procedure however is based on a

single quantity, (p*u*)' and location (x*, y*) = (0.06m, 0.536*) within the entire flow

field. In order to verify that near the forcing location the disturbance development

is indeed linear, the simulation results have been compared to results from Linear

Stability Theory. Shown in figure 5.9 for selected spanwise wave numbers are the

wall-normal amplitude and phase distributions for the streamwise velocity and the

density from the DNS (CFUND 2, low forcing amplitude) and the corresponding

eigenfunctions from LST. The amplitude distributions from both, linear theory and

DNS, are normalized by their respective maximum value within the boundary layer.

The excellent agreement between LST and DNS indicates that the linear eigenbe-

havior of the disturbances is correctly reproduced in the DNS. Furthermore, this
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Figure 5.7: Spanwise amplitude (a) and phase (b) distributions (20kHz) of mass-flux
disturbance (pu)' at wall-normal location y*/6* = 0.53 and streamwise location x* =
0.06m of the DNS (-) and the experiment (U FFT by Kosinov, El symmetric FFT)
for the new amplitude and phase distributions of the v-velocity over the disturbance
slot (...).

(a) t = (b) t = .(C), = 2T

Figure 5.8: Isosurface of constant v-velocity disturbance over the disturbance slot for
three different time instants. The v-velocity at the wall is disturbed by the dotted
amplitude and phase distribution in figure 5.7 (CFUND 2). The dark bar indicates
the disturbance slot.
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agreement emphasises that the DNS would match the mass-flux disturbance (p*u*)'

in the experiments throughout the linear regime if experimental data from different

streamwise and wall-normal positions were available for comparison.

Figure 5.10 provides another indication that the disturbances in the DNS develop

linearly, according to their eigenbehavior. The streamwise amplification rate ai and

the wave number ar from LST, are compared to ai and ar from the DNS, which are

computed from the wall-pressure disturbance. In figure 5.10a, the amplification rate

from the DNS is most likely modulated by acoustic waves generated by the forcing.

The amplification of disturbances in the DNS is somewhat stronger than predicted

by LST. This difference between LST and DNS has also been observed in previous

investigations (Thumm et al. 1989, Thumm 1991, Husmeier et al. 2005) and has been

attributed to non-parallel effects resulting from the growth of the boundary layer. For

the streamwise wave number ar (figure 5.10b), which is less sensitive to non-parallel

effects, the agreement between DNS and LST is nearly perfect.

In summary, the focus of this section has been on the linear behavior of distur-

bances with the fundamental frequency of 20kHz. It was shown that the DNS can

reproduce the results predicted by linear theory for the wall-normal shape of the

eigenfunctions and the downstream disturbance growth. In the experiment, the dis-

turbance development up to x* = 0.06m is assumed to be linear. Therefore, the

receptivity study from section 5.3.1 can be employed to match the development of

the mass-flux disturbance (pu)' from the DNS and the experiment throughout the

entire linear regime. The temporal evolution of the mass-flux disturbance (pu)' at

y*/J* = 0.53 and x* = 0.06m in figure 5.11 illustrates this agreement between the

experiment and the DNS.
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Figure 5.9: Wall-normal amplitude and phase distribution of streamwise velocity dis-
turbance and density disturbance for three different spanwise wave numbers for the
fundamental frequency 20kHz at x* = 0.06m. Symbols represent results obtained
from LST ((*): amplitude, (x): phase) and lines represent DNS results ((-): ampli-
tude, (- -): phase).
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Figure 5.10: Downstream development of complex streamwise wave number predicted
by LST and by DNS (obtained from wall-pressure disturbance) for three different
spanwise wave numbers and the fundamental frequency 20kHz.

5.3.3 Nonlinear Behavior

Before trying to identify the oblique breakdown mechanism in the simulations, a short

summary of the most important characteristics of oblique breakdown is presented. In

many previous numerical investigations (Thumm et al. 1990, Adams & Sandham

1993, Fezer & Kloker 1999), the authors concluded that oblique breakdown is a very

dominant mechanism. For the computational setup of these simulations, oblique

breakdown produced the highest growth rates for the nonlinearly generated modes.

In all these previous simulations, oblique breakdown was triggered by forcing two

oblique instability waves with equal but opposite wave angle. The wave angle of this

wave pair was determined by forcing discretely at the most unstable spanwise wave

number according to linear theory. This chosen spanwise wave number also defined

the domain size in spanwise direction zw = 2r/3 (Thumm et al. 1990, Adams &

Sandham 1993, Fezer & Kloker 1999, Husmeier et al. 2005). All waves with smaller

spanwise wave numbers were therefore excluded from the simulations.

One of the most important features of oblique breakdown, observed in these earlier
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investigations, is the generation of steady longitudinal modes, which grow strongly in

the strearnwise direction. As oblique breakdown sets in, the steady modes (denoted

by [0, ±2]) start to play a dominant role, since they are directly generated by the

forced wave pair [1, ±1]. The notation [h, k] is used to identify a particular wave

according to its frequency h and its spanwise wave number k. h denotes multiples

of the fundamental frequency and k multiples of the smallest spanwise wave number.

The [0, ±2] modes are responsible for the generation of various other modes, as for

example the wave pair [1, ±31 or the steady longitudinal modes [0, ±4]. A detailed

description of the nonlinear wave interactions in the early nonlinear stages of oblique

breakdown can be found in Thumm (1991). Thumm et al. (1990) and Fasel et al.

(1993) also stated a particular characteristic of the nonlinear wave interactions in

oblique breakdown: Modes with odd spanwise wave numbers k are only generated

for odd harmonic frequencies h, and modes with even spanwise wave numbers are

generated only for even frequencies h.

Having discussed the main characteristics of oblique breakdown enables one to

analyze the following numerical results and to identify this mechanism in the experi-

ments. Four DNS of the early nonlinear stages of transition have been performed and
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are partially compared to the experimental findings in the succeeding paragraphs.

The flow is perturbed by the method outlined in section 5.3.1 with the single fre-

quency of 20kHz. The four simulations differ in the absolute value of the forcing

amplitude (v-velocity over disturbance slot). For the first simulation (CFUND 2),

the forcing amplitude is small enough for the developing disturbances to be in the

linear regime throughout the entire computational domain. The second simulation

(CFUND 3) has a forcing amplitude for which the absolute spanwise amplitude of

the mass-flux disturbance (pu)' at the streamwise location x* = 0.06m in the ex-

periment is matched exactly (figure 5.5). For the last simulation (CFUND 4), the

forcing amplitude is again increased and differs from CFUND 3 by a factor of - 1.36.

Note that even for this forcing amplitude, the disturbance behavior is still linear at

x* = 0.06m. In first three simulations, the computational domain ranges in down-

stream direction from x* = 0.02m to x * 0.17m so that the numerical results can

be compared to the reported experimental data at locations x* = 0.11 m, x* = 0.12m,

and x* = 0.13m. The final simulation (CFUND 5) has the highest forcing amplitude.

For this simulation, also the number of spanwise Fourier modes and the streamwise

extend (x * 0. 18m) of the computational domain are increased. Therefore, this

simulation covers a wider range of the transition process than the other simulations.

The streamwise development of the disturbance generated by the localized forc-

ing at x* = 0.038m is illustrated in spectral space by figure 5.12 for CFUND 2 and

CFUND 4. CFUND 3 exhibits a similar behavior as CFUND 4 and is therefore not

presented in figure 5.12. In figures 5.12a,c, the Fourier amplitudes for the mass-

flux disturbance (pu)' at the wall-normal location y*/6* = 0.53 are plotted versus the

streamwise direction x and the spanwise wave number/3. Only one half of the spanwise

domain extent is shown since all simulations are symmetric to /3* = O.Omm - 1. Ini-

tially both, the small-amplitude disturbances (figure 5.12a) and the large-amplitude

disturbances (figure 5.12c), experience exponential amplitude growth resulting in a

maximum near /3 = 0.8mm - 1. For the large-amplitude disturbances in figure 5.12c,
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forcing amplitude (( FUND 2), (c, d) I)NS with high forcing amplitude (CFUND 4).
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however, a second maximum forms near 3* = 2mm- ' downstream of x* = 0.1m as

a result of nonlinear wave interactions. These nonlinear wave interactions are also

visible in the phase development for the mass-flux disturbance (pu)' at the same wall-

normal position (figure 5.12d). In figure 5.12c,d, the near-field of the disturbance slot

is excluded and the start position for the post-processing is indicated by the horizontal

dashed line.

At x* = 0.1 1m, x* = 0. 12m, and x* = 0. 13m downstream of the leading edge of the

flat plate, experimental data are compared to the numerical results in figure 5.13. In

this figure, the amplitude and phase distribution of the mass-flux disturbance (PU)'

are plotted for the first three DNS over a wider range of spanwise wave numbers.

Noted as primary peaks and secondary peaks, the same maxima as in figure 5.12

also appear in figure 5.13 for both DNS with a large forcing amplitude (CFUND 3

and CFUND 4). The absolute values of the mass-flux disturbance of the DNS in

this figure are resealed by a single, constant factor Arej (CFUND 3: - 3.008- 10- 4,

CFUND 4: -_ 4.794" 10-4) to match the experimental data. The experimental results

are again provided by Kosinov (2006) and are transformed into spectral space using

a full (asymmetric) Fourier series expansion (Ermolaev et al. 1996). The streamwise

development of the primary maxima in CFUND 4 matches the behavior observed

in the experiment perfectly. This is not the case for the streamwise development of

the nonlinearly generated secondary maxima. In CFUND 3, these maxima are not

as pronounced as in CFUND 4, although the absolute disturbance amplitudes from

CFUND 3 at position x* = 0.06m match the estimated values from the experiments

(figure 5.5). To achieve a comparable nonlinear behavior as in the experiments,

the forcing amplitude of CFUND 3 had to be increased (factor 1.36) to the forcing

amplitude of CFUND 4.

The temporal evolution of the disturbances at the streamwise location x* = 0.13m

from the experiment and the DNS (CFUND 4) is illustrated in figure 5.14. In the

experiments, the subharmonic frequency is strongly visible. Structures close to the
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largest forcing amplitude (CFUND 4), (El) experiment (Kosinov, 2006).
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centerline (z* = 0.0m) repeat every second period of the fundamental frequency. For

the DNS, the temporal evolution of the structures close to the centerline exhibits one

great difference to the experiment: Not surprisingly, the influence of the subharmonic

frequency does not appear since this frequency is not disturbed. Instead, steady

modes modulate the disturbance signal between z* = -0.004m and z* = 0.004m

shifting the disturbance amplitude to purely positive or negative values.

The overall excellent agreement between the numerical results of the DNS and the

experimental data in figure 5.13 indicates that even with the (deliberate) suppression

of a subharmonic development (present in the experiment) the simulations capture

the development of the fundamental frequency correctly. The results from the DNS

therefore suggest that in the experiments another mechanism coexists with the sub-

harmonic resonance triad. The generation of steady modes in figure 5.14 and the

development of secondary peaks in figure 5.13 at a spanwise wave number that is a

higher harmonic of the spanwise wave number of the primary peaks are an indication

for the presence of an oblique breakdown mechanism.

(a) (b)

1212

0.000

W, 0" .. 12W : "

Figure 5.14: Temporal evolution of the mass-flux disturbance (pu)' for the fundamen-
tal frequency (20kHz) at the wall-normal position y*/* = 0.53 and the streamwise
position x* = 0. 13m for the experiment (a) (Kosinov, 2006) and the DNS (b) (CFUND
4): (-) positive disturbance amplitude, (...) negative disturbance amplitude.

The DNS with the highest forcing amplitude (CFUND 5) reveals stronger non-

linear wave interactions and therefore also a more pronounced secondary maximum.
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Shown in fig : 5.15 is the nonlinear development of the mass-flux disturbance (pu)'

at y*/6* = ,. )3 in response to the high forcing. Clearly, many additional maxima

at equally sp ,ced spanwise wave numbers are visible for the fundamental frequency

in figure 5.1 , The steady part in figure 5.15a exhibits also several maxima equally

spaced in sp i wise direction. The dashed lines indicate the spanwise wave number

of the maxi t for the steady modes near the outflow. These dashed lines are also

plotted in fig 1:e 5.15b to illustrate that the maxima of the steady modes are located

in between ti maxima for the fundamental frequency. Oblique breakdown predicts

exactly this ,1 havior. The first maximum in figure 5.15b represents mode [1, 1], the

additional ri I.ima at higher spanwise wave numbers represent mode [1, 3], [1, 5] etc.

Similarly, th, naximum at 13 _ 1.4mm- in figure 5.15a corresponds to mode [0, 2]

and the addii ;onal maxima to the modes [0,4], [0,6] etc.
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Figure 5.15: "'ontour levels of the Fourier amplitude for the mass flux disturbance
(pu)' at wall ormal location y*/* 0.53 for different streamwise and spanwise
locations of t c DNS.
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5.4 Asymmetric Subharmonic Resonance

After identifying oblique breakdown in the experiments by Ermolaev et al. (1996),

asymmetric subharmonic resonance was studied to clarify its role in supersonic boundary-

layer transition when compared to oblique breakdown. Towards this end, both dis-

turbance frequencies (20kHz and 10kHz) were considered and therefore, the "entire"

experiment was simulated. Before any DNS results are discussed, the linear behavior

of instability waves with both frequencies obtained using linear stability theory (LST)

are presented to determine the spanwise wave numbers of highly unstable waves at

both frequencies. For these waves, possible resonance triads according to LST are

determined. Furthermore, DNS results for the linear regime are compared to results

obtained from LST in order to identify the influence of nonparallel effects resulting

from the boundary layer growth on these triads. Following the study of the linear dis-

turbance behavior, the early nonlinear stages of transition caused by a subharmonic

route are discussed with the main focus on the selection process for a particular

subharmonic resonance triad.

5.4.1 Linear Stability Considerations

For the linear stability analysis, the dimensional fundamental and subharmonic fre-

quencies f* are scaled using the streamwise velocity u* and the kinematic viscosity

u2 at the free-stream in order to obtain their corresponding reduced frequencies

F - 27rf*v . (5.4)
U*2

listed in Table 5.1. The reduced frequency is required as input for the linear stability

Table 5.1: Reduced frequencies used for the linear stability analysis.
f" (kHz) F [-]
10 1.9.10 - 1
20 3.8- 10- 5
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solver of Mack (1965). For a given frequency, Reynolds number and spanwise wave

number, this tool solves the eigenvalue problem posed by spatial LST and returns the

complex wave number

a = a, + i a, (5.5)

as its solution. Here, ar is the streamwise wave number and ai is the streamwise

amplification rate. Negative values of o, indicate amplification and positive values

damping of the eigensolution.

According to LST, waves observed in the experiments with the fundamental fre-

quency of 20kHz and in the spanwise wave number range of 3* = 0.5mm - 1 to
/3* = 1.0mm - 1 are in the vicinity of the maximum amplification rate aj, at both

locations x = 0.06m and 0.13m as shown in figures 5.16a,b. For the subharmonic

frequency lOkHz, figures 5.16a,b indicate that the range of maximum amplification

rate is slightly shifted to lower spanwise wave numbers at x* = 0.13m. A better

criterion for identification of instability waves reaching the highest amplitudes within

the domain of interest is the normalized amplitude N. It is obtained by integration

of ai between two streamwise locations or, equivalently, by taking the logarithm of

the ratio of the disturbance amplitudes at these two locations:

N = -aj(i)di = ln(A(x), (5.6)
.ref (,f

where xr,f is the start location for the integration, i.e., the reference location for the

amplitude ratio. At location x* = 0.13 in Figure 5.16b the normalized amplitudes (N)

are shown for both frequencies (symbols) at different spanwise wave numbers. They

were obtained by integrating the amplification rates ai predicted by LST with Xr,f

being equal to the location where the disturbances were introduced in the experiments

by Kosinov et al. (1994) (x*,f = 0.038m). For the fundamental frequency, waves

with a spanwise wave number 3 between 0.7mm - 1 and 0.8mm - 1 reach the highest

normalized amplitudes, whereas for the subharmonic frequency, waves with a spanwise

wave number 3* = 0.6mm - 1 have the highest normalized amplitude.
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Before the different three-wave resonance triads are determined using LST, a short

introduction to the resonance conditions is given below. Generally, the resonance

condition for a three-wave triad is a phase synchronization of all three instability

waves (Kachanov & Levchenko, 1984):

01 = 02 + 03, On(x, z, t) = anx +/3z- wt. (5.7)

Here, 0 symbolizes the phase, w the angular frequency, ar and 3 the streamwise and

spanwise wave number, respectively. By comparing the coefficients in front of the

independent variables x, z, t the following three conditions can be derived:

I=2 3 1 =2 a 3 / 3.
w=w2 +w 3 , ar a=r+ar, 1= 32±+33 (5.8)

For the special case of a symmetric, subharmonic resonance triad with one primary 2D

wave (w',/31) and two symmetric, subharmonic oblique waves (w2 ,31), equation (5.8)

reduces to the well-known conditions for incompressible boundary layers (Kachanov

& Levchenko, 1984)

w 1 = 2w , c4 _-- , /32 /33. (5.9)

Equation (5.9) can be further utilized to derive an expression for the phase velocity

c! of the 2D instability wave
1 2

cX = vi , cX = , VX -  (5.10)
r ar

where vX is the velocity of the two oblique waves "with which it is necessary to move

along the x-axis in order that the subharmonic phase should not depend on the time"
i

(Kachanov & Levchenko, 1984). It is important to note that vX is not the phase

speed of the oblique waves since their phase speed is defined as

1 1

= 1 (5.11)
(a2)2 + (/3)2
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Since symmetric, subharmonic resonance triads do not play an important role

in the transition process of a Mach 2 boundary layer, the resonance conditions for

Kosinov's asymmetric, subharmonic resonance triad are more complicated. For this

case, equation (5.8) simplifies to

w 2W2,'3  1 e2 +e3 fll =32+/33 (5.12)

Equation (5.12) is illustrated as an addition of three wave vectors in figures 5.16c,d

for x* = 0.06m and x* = 0.13m forming a triad that was also observed by Kosinov

et al. (1994) in his early experiment in 1994. The primary wave of this triad has

the fundamental frequency of 20kHz and a spanwise wave number of /* = 0.8mm - '.

The two subharmonic waves that close the triad have a spanwise wave number of

/3" -0.6mm - and/3* = 1.4m - 1 .

In the following, the procedure used to locate a resonance triad using LST re-

sults is explained (Zengl, 2005). Figure 5.17a shows the spanwise distribution of the

streamwise wave number ar for both frequencies at x* = 0.06m (for reference see fig-

ure 5.16c). In order to satisfy the resonance condition for the spanwise wave number

in equation (5.12) both subharmonic waves of the triad need to have a difference in

their spanwise wave number that has the value of the spanwise wave number of the

primary, fundamental wave

0 2+' 3  = 01  (5.13)

Therefore, the spanwise distribution of a, for the subharmonic frequency in fig-

ure 5.17a is shifted by AO as defined in equation (5.13) (blue dashed line in fig-

ure 5.17a). In this example, A,3* is equal to 0.5m - 1 , which implies that we are

looking for a triad with/3* = 0.5mm - 1 as the spanwise wave number for the primary

wave. To satisfy the resonance condition for the streamwise wave number in equation

(5.12) both graphs of the streamwise wave number for the subharmonic frequency in

figure 5.17a are added (red dashed line). The resulting graph exhibits the value of

the streamwise wave number of the fundamental primary wave with/3* = 0.5mm - 1
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at only one single point indicated by a black dot. The spanwise wave number at

this position is about 03* = 1.16mm - 1 . The black dot in figure 5.17a suggests the

existence of a resonance triad, which is composed of one primary wave with funda-

mental frequency of 20kHz and spanwise wave number of 3* = 0.5mm1 and two

subharmonic way's with ,6* = -0.66rm -1 and /* = 1.16mm - 1. The same triad can

be found at x* = 0.13mm - ' (figure 5.17b). Note that this triad was not reported by

Kosinov and his co-workers.

In figure 5.17c,d the black dot with the largest spanwise wave number (13* =

1.4mm - 1) represcnts the asymmetric subharmonic resonance triad discovered by Kosi-

nov et al. (1994). Furthermore, figure 5.17c exhibits two other dots, which are related

to one new triad ,:panwise wave number of the primary wave: 3* = 0.8mm - 1 and of

the two subharmonic waves: 3* O.Omm -1 and /3* _ 0.8mm-1). Note that for this

case, the resonance conditions are not exactly fullfilled at x* = 0.06m. This triad can-

not be identified farther downstream at x* = 0.13m. It, however, might still play an

important role sirce it could explain the development of a peak near 03* = O.Omm - 1 in

the subharmoi' .isturbance signal of the mass flux from the experiments (Kosinov

et al., 1994). VN): , details on this topic can be found in section 5.4.2.2.

Using this tri-hod, various asymmetric, subharmonic resonance triads can be

determined for a Mach 2 boundary layer. The spanwise wave number of both sub-

harmonic waves i,; fixed by the value of the spanwise wave number for the primary

wave with the fundamental frequency. This dependency is illustrated in figure 5.18

for x* = 0.06m artd x* = 0.13m. It is clearly visible that at least one resonance triad

exists for every spanwise wave number of the primary wave between /3* 0.5mm- 1

and 3* = 1.0mm-1. For one group of triads, the subharmonic wave that initially

experiences mainiv linear growth (blue symbols) has a spanwise wave number close

to the one conne(ted to the maximum amplitude growth as shown in figure 5.16b

(3* -- 0.6mm'). These triads are denoted as triads of the first group. Triads with

one subharmon:,> ,.rave close to /3* - O.Omm - 1 are called triads of the second group
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throughout this document.

For the resonance triads discussed so far, the resonance conditions formulated in

equation (5.12) have only been verified at two different streamwise locations (x* =

0.06m and x* = 0.13m). Two triads from the first group have been chosen for

figure 5.19 to confirm whether these conditions are also satisfied for other streamwise

locations. In figure 5.19, the downstream development of the streamwise wave number

ra for all three waves participating in both triads are plotted (lines). The symbols

represent the sum of the streamwise wave number from both subharmonic waves. The

values of this sum are very close to the spanwise wave number of the primary wave

as required by equation (5.12) for all streamwise positions.

To this end, it can be summarized that LST predicts various asymmetric, sub-

harmonic resonance triads for the physical flow conditions of Kosinov's experiments.

Most likely, there is a mechanism that is responsible for the selection process of a spe-

cific triad since Kosinov reported only one triad. Furthermore, Kosinov might also

have observed the second group of triads indicated in figure 5.18 since these triads

could explain the development of a peak near [3* = O.Omm 1 in the subharmonic

disturbance signal of the mass flux from the experiments (Kosinov et al., 1994).

5.4.2 DNS Results

The linear behavior of disturbances for both frequencies is discussed in the next sec-

tion. These results are obtained from DNS with very small forcing amplitudes and can

be used as a reference to identify a deviation from the linear behavior in simulations

with larger forcing amplitudes. Following the study of the linear disturbance behav-

ior, DNS results of the "entire" experiment, including the asymmetric subharmonic

resonance, are discussed.
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5.4.2.1 Linear Behavior

Two DNS with a very small forcing amplitude have been conducted in order to in-

vestigate the linear disturbance development. In one DNS, only the fundamental

frequency is forced as already explained in section 5.3.1 (CFUND 1) and in the other

DNS, only the subharmonic frequency is perturbed. Note, for the subharmonic fre-

quency (10 kHz), the calibration procedure in section 5.3.1 cannot be applied since

it is based on the assumption of initially linear disturbance development. Through

the resonance interaction of disturbances with both frequencies, an initially linear

disturbance development for subharmonic disturbances cannot be guarantied in our

simulations with high (fundamental) forcing amplitudes. Therefore, disturbances with

subharmonic frequency were excited by forcing each spanwise Fourier mode with the

same amplitude A (03) = A and phase Op (/3) = 0 resulting in a finite approximation

of the delta function. Results from both simulations are shown in figure 5.20. The

streamwise and spanwise amplitude and phase distributions of the mass-flux distur-

bance (pu)' at wall-normal location y*/b* = 0.53 is illustrated in figure 5.20a,b for the

fundamental frequency and in figure 5.20c,d for the subharmonic frequency. (Note,
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this wall-normal position (y*/J* = 0.53) is chosen since in the experiments, data were

measured at the same position.) Both cases show similar trends. The maximum in

the amplitude distribution in both figures is caused by the exponential growth accord-

ing to linear theory. For the fundamental frequency, the maximum is located near

,8* = 0.8mm - ' (close to the outflow) and for the subharmonic frequency, the maxi-

mum is near 13* = 0.6mm - 1 as predicted by LST in figure 5.16b. Two-dimensional

disturbances and disturbances with a small wave angle do not experience any stream-

wise growth for the subharmonic frequency and only a very weak growth for the

fundamental frequency (figure 5.21).

Figure 5.21 illustrates an important aspect for the setup of the asymmetric subhar-

monic resonance in the experiments. As for the "classical" symmetric subharmonic

resonance for incompressible flow, where the primary wave of the resonance triad is a

highly amplified two-dimensional wave, the oblique, primary waves of the asymmetric,

subharmonic resonance triads found in figure 5.18 also experience a high streamwise

amplitude growth.

In order to study the influence of nonparallel effects resulting from boundary

layer growth on the resonance triads, the complex streamwise wave number obtained

from LST has to be compared to the corresponding result from the DNS. For the

fundamental frequency 20kHz, this result has already been shown in figure 5.10. As

mentioned in section 5.3.2, the amplification of disturbances in the DNS is somewhat

stronger than predicted by LST (figure 5.10a). This fact is attributed to nonparallel

effects. Note that the streamwise amplification rate or obtained from the DNS is

dependent on the "criterion" used for its calculation (here, wall-pressure disturbance)

and that nonparallel effects might have a different influence on different criteria. For

the streamwise wave number at, the agreement between DNS and LST is nearly

perfect (figure 5.10b) confirming that this quantity is less sensitive to nonparallel

effects (connected to the criterion). A very similar observation can also be made

for the subharmonic frequency implying that the resonance triads are only weakly
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Figure 5.21: Spanwise amplitude (a) and phase (b) distribution for the mass-flux
disturbance (pu)' at wall-normal location y*/J* = 0.53 for two different streamwise

positions.

affected by the growth of the boundary layer. Therefore, it can be assumed that the

same resonance triads as identified using LST will also be present in all DNS with

high forcing amplitudes.

As a preliminary summary, the results in this section show that Kosinov did setup

his experiments similarly to a classical subharmonic resonance triad for incompressible

boundary layers. The primary waves in each of the subharmonic resonance triads

identified by LST experience strong exponential amplitude growth as the 2D primary

wave for the incompressible case. The resonance triads are only weakly affected

by the streamwise growth of the boundary layer. Hence, the same resonance triads

discovered using LST will also be present in the following simulations with high forcing

amplitudes.

5.4.2.2 Simulation of Asymmetric Subharmonic Resonance

In order to investigate the dependency of the asymmetric subharmonic resonance

on the relationship between fundamental and subharmonic disturbances, several nu-

merical studies have been performed and are discussed in the following. First, the
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influence of the amplitude ratio between disturbances of both frequencies and then,

the influence of the phase relation is studied. For all simulations presented in this

section, the forcing amplitudes for disturbances with the fundamental frequency have

been increased in order to see the imprint of the resonance triads in the subharmonic

disturbance field. Both, the absolute value of the forcing amplitude and the spanwise

forcing profile over the disturbance slot inside the flat plate are identical to CFUND

4. As before, disturbances with subharmonic frequency are excited by forcing each

spanwise Fourier mode with the same amplitude A (3) = A and phase Op (3) = 0. To

save computational costs, the DNS for both parametric studies have smaller compu-

tational domains in both the streamwise and wall-normal direction than illustrated

in figures 5.2a and 5.2b.

Figure 5.22 shows results from one DNS (CSUB 1) that will serve as a reference

for all other cases discussed in this section. The amplitude and phase of the forcing

for subharmonic disturbances is listed in column one of table 5.2. The flow response

to this type of forcing is illustrated in figure 5.22 for the subharmonic frequency. This

figure shows contour levels versus streamwise direction and spanwise wave number of

the Fourier amplitude and phase of the mass-flux disturbance (pu)' at wall-normal

location y*/ 6 * = 0.53. It is clearly visible that at higher spanwise wave numbers a

second maximum appears near 3* = 1.7mm - 1 close to the outflow (figure 5.22a).

The nonlinear wave interactions caused by the resonance triads alter the flow field

immediately downstream of the disturbance generation (compare figure 5.22a with

5.20c). Note, this is the reason why the calibration procedure (section 5.3.1) applied

for the fundamental frequency cannot be used for the subharmonic frequency. The

phase is also significantly changed by nonlinear effects leading to two phase jumps

close to 3 = 1.2mm- 1 and /3" = 0.0mm' in figure 5.22. The phase jump at

/3* = 0.Or m - 1 supports the previously stated possibility (section 5.4.1) of additional

triads from the second group in figure 5.18.

CSUB 2 and CSUB 3 in table 5.2 differ from CSUB 1 in the absolute value of the
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Table 5.2: Amplitude study: forcing amplitude and phase (of the v-velocity at the
wall) for the subharmonic frequency.

CSUB 1 CSUB 2 CSUB 3
A(,3) [-1 5.10-6 1. 10- 5  3-10-5

OP 0.0 0.0 0.0

3 I

4,6571E-.

429 7.426

S02  0.04 0 0.08 0.1 .02 0.03 004 00 010 007 0.08 0.09 0.

(a) amplitude distribution, CSUB 1 (b) phase distribution (0/(27r)), CSUB 1

Figure 5.22: Contour levels of Fourier amplitude (a) and phase (b) of the mass-flux
disturbance (pu)' for the subharmonic frequency (lOkHz) at wall-normal location
y*/6* = 0.53 for different streamwise and spanwise locations (CSUB 1).

forcing amplitude for the subharmonic frequency. In CSUB 2, the forcing amplitude

is two times larger than for CSUB 1. For CSUB 3, the forcing amplitude of the

subharmonic frequency is further increased by a factor of three when compared to

CSUB 2. A similar disturbance development as for CSUB 1 in figure 5.22 is also

found for CSUB 2 and CSUB 3. Figure 5.23 provides a more detailed comparison

between all three cases (CSUB 1, 2 and 3). Here, the spanwise amplitude distribution

of (pu)' at y*/ 6 * = 0.53 for several streamwise positions are compared and do not

show any noticeable differences between all three cases. This is a clear indication that

the nonlinear resonant growth of subharmonic disturbances does not depend on the

forcing amplitude for this frequency and that the amplitude ratio for disturbances
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of both frequencies does not determine a specific resonance triad in the simulations.

This is in contrast to the experimental findings (Kosinov et al. 1994, Ermolaev et al.

1996) where an influence of the forcing amplitude on the nonlinear wave development

was reported.
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o-05 bm d. 541 Is-04 0* lC2sE

,,/ " il"" '
* 0 0 ~ji f2i -I

A -
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(a) CSUB 1 (b) CSUB 2 (c) CSUB 3

Figure 5.23: Spanwise amplitude distribution for CSUB 1 (a), CSUB 2 (b) and CSUB
3 (c) of the mass-flux disturbance (pu)' for the subharmonic frequency (lOkHz) at
wall-normal location y*/b5 * = 0.53.

In the simulations, however, the asymmetric subharmonic resonance can be strongly

influenced by changing the phase relation between fundamental and subharmonic dis-

turbances. The influence of the phase relation on the resonance mechanism of one

particular triad was previously studied for incompressible boundary layers by Zelman

& Maslennikova (1993) and for a Mach 3 boundary layer by Zengl (2005). In both

investigations, it was possible to delay transition by changing the phase to a specific

value. Several simulations have been performed in order to investigate the impor-

tance of the phase relation on the resonance mechanism. Some of these simulations

are listed in table 5.3. For these DNS, the phase of subharmonic disturbances has

been altered with respect to the phase of fundamental disturbances in the forcing

slot by introducing a phase shift 0(/3). This phase shift is quantified in table 5.3

as a phase difference (AO2D/ir) between 2D fundamental waves and 2D subharmonic

waves. Note that only for the subharmonic frequency the phase of the forcing signal



111

is constant over the spanwise wave numbers. The spanwise phase distribution for the

fundamental frequency is taken from CFUND 4 in section 5.3.1, therefore, AoID/Tr

varies with 3.

Table 5.3: Phase study: forcing amplitude and phase (of the v-velocity at the wall)
for the subharmonic frequency.

CSUB 4 CSUB 5 CSUB 6 CSUB 7 CSUB 8 CSUB 9
A(3) [-] 5.10-6 5.10-6 5-10-6 5.10-6 5.10-6 5- 10-6

Ao2D/7r [-] -0.15 -0.30 -0.45 -0.60 -0.75 -0.90

For all six cases summarized in table 5.3 the phase difference AO2D/ 7r between

2D fundamental waves and 2D subharmonic waves was changed. Figure 5.24 displays

the contour levels of the Fourier amplitude of the mass-flux disturbance (pu)' for the

subharmonic frequency (lOkHz) of different streamwise locations and spanwise wave

numbers. The first two figures (CSUB 4 and 5) exhibit similar trends as already

discussed for CSUB 1 in figure 5.22a. As before, the first maximum at small spanwise

wave numbers results from the exponential growth according to linear theory, whereas

the second maximum at higher wave numbers develops due to the resonance. For

both DNS, this second maximum is, however, shifted towards smaller spanwise wave

numbers when compared to CSUB 1. Moreover, it is more pronounced for CSUB 5

(figure 5.24b) than for CSUB 1 and CSUB 4 (figure 5.22a) and close to the outflow,

reaches higher amplitude levels than the first maximum. With increasing absolute

value of AOD/r, the second maximum moves even closer to the first resulting in a

merging of both maxima and in an increase of its absolute amplitude (CSUB 7 and

8 in figures 5.24d,e).

Figure 5.25 provides further details of the simulation results from figure 5.24 and

of results from additional simulations. A tool was developed that tracks the spanwise

wave number and the amplitude value of both maxima in figure 5.24 and these values

are plotted versus AOD/r in figure 5.25 for three different streamwise positions.

The spanwise wave number of the first maximum (figure 5.25a), which is generated
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Figure 5.24: Effect of phase difference AOP2D/7r (phase difference between 2D funda-
mental waves and 2D subharmonic waves) on the contour levels of Fourier amplitude
of the mass-flux disturbance (pu)' for the subharmonic frequency (l0kHz) at wall-
normal location y*16* 0.53 for different streamnwise and spanwise locations. (a)
AO2 D/7r - -0.15 (CSUB 4), (b) AO2 D/7r "-_ -0.30 (CSUB 5), (c) AOPD/ 7 04
(CSUB 6), (d) AOP2D/7 c- -0.60 (CSUB 7), (e) AOP2D/7r - -0.75 (CSUB 8),(f
A02D/ 7 - -0.90 (CSUB 9)
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according to linear theory, does not match the spanwise wave number from the DNS

with small forcing amplitude (figure 5.20c) indicating that nonlinear wave interactions

have already altered the subharmonic disturbance field. At positions x* = 0.08m and

x* = 0.Im and for a phase difference of AOD/7r - -0.53, the spanwise wave number

experiences a sudden increase in its value to 3* _ 1.0mm- and 3 _ 1.2m - 1 ,

respectively. This sudden increase is due to the merging of the amplitude maxima seen

in figures 5.24e,d. The plots for the second maximum (figures 5.25c,d) show a general

trend that can also be observed in the contour plots in figure 5.22 and figure 5.24

and in the amplitude plots in figure 5.23: The spanwise wave number of a maximum

decreases with increasing streamwise position. The graph for x* = 0. lm in figure 5.25c

also confirms that we were able to shift the second maximum within a certain interval

of the spanwise wave number ranging from 0* !- 1.0mm - 1 to * - 1.9mm - 1. A

similar range for triads from the first group was also obtained using the results from

LST in figure 5.18. Another important finding in figure 5.25 is indicated by the green

symbols. All graphs in figure 5.25 have a periodicity of A02D = 7r. The green symbols

result from a simulation with A02D/ 7r = -1.60. These results match exactly the DNS

with A0°2D/r = -0.60.

The study in figure 5.25 can also be employed to determine the optimum AO2

for which the DNS results exhibit the similar characteristics in the spanwise mass-

flux distribution for the subharmonic frequency as obtained from the experiments

by Kosinov et al. (1994) and from theory by Tumin (1996). Figure 5.26 provides a

quantitative comparison of these results (from a DNS with a larger computational

domain) for different streamwise positions with A02D/7r = -0.30 (CSUB 10 in the

appendix). All three results show a small first peak around 3* - ±0.6mm - 1 and

a strong second peak at 3* - ±1.4mm- 1 generated by two resonance triads from

the first group with two primary waves at 0* = ±0.8 and four subharmonic waves

at 0* = TO.6 and 0* = ±1.4. Note that figurcs 5.26a,c also have a very small

peak at 3* = O.Omm - 1 which might be generated by triads of the second group
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Figure 5.26: Spanwise amplitude distribution of the mass-flux disturbance (pu)' for
the subharmonic frequency (10kHz): (a) experiment (Kosinov et al., 1994), (b) theory
(Tumin, 1996) and (c) DNS (CSUB 10) with AO2D/Tr = -0.30. Note the amplitudes
of of all plots are arbitrarily scaled.

(section 5.4.1). Ermolaev et al. (1996), however, attributed these peaks to acoustic

disturbances radiating form the supersonic boundary layer.

This section is closed by discussing figure 5.27, which illustrates contour levels of

Fourier amplitude and phase of the mass-flux disturbance (pu)' for both, the funda-

mental frequency and the subharmonic frequency, with A2D/7r = -0.30. The distur-

bance development for the fundamental frequency is of great interest. Section 5.3.3

suggests that the nonlinear wave interactions for this frequency might be due to

the oblique breakdown mechanism involving only the fundamental disturbances with

frequency 20kHz. The results in figure 5.27 are obtained from case CSUB 10. Never-

theless, the disturbance development for the fundamental frequency in figures 5.27a,b

matches exactly the earlier findings (see also figure 5.28) confirming the concept of

two co-existing transition mechanisms in the experiments by Kosinov et al. (1994).
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Figure 5.27: Contour levels of Fourier amplitude (a,c) and phase (b,d) of the mass-
flux disturbance (pu)' for the fundamental frequency (20kHz) and the subharmonic:
frequency (l0kHz) at wall-normal location y*16* =0.53 for different streamnwise and
spanwise locations (CSUB 10, with AOP2D/ 7r = -0.30).
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Figure 5.28: Spanwise amplitude (a) and phase (b) distribution for the mass-flux
disturbance (pu)' at wall-normal location y*/J* = 0.53 for two different streamwise
positions. Comparison between DNS of the "entire" experiment including the sub-
harmonic resonance and results from a simulation of the nonlinear disturbance devel-
opment for the fundamental frequency only (see figures 5.13 and 5.7).

5.5 Summary

Transition in a supersonic flat-plate boundary layer at Ma = 2.0 has been investi-

gated using DNS following the experimental studies by Kosinov et al. (1994). In both,

simulation and experiment, transition has been initiated by a wave train triggered by

localized forcing. While the forcing method in the experiment was a glow discharge,

in the DNS, the flow has been forced by perturbing the v-velocity in a blowing and

suction slot in the flat plate. A receptivity study has been performed to adjust the

forcing through the slot in order to match the flow response to the glow discharge.

In the experimental studies, Kosinov et al. discovered a new breakdown mechanism,

which they called asymmetric subharmonic resonance, where oblique waves with the

frequency of 20kHz resonate with two oblique subharmonic waves of different span-

wise wave numbers. Scrutinizing the experimental data, however, also suggests the

presence of a different breakdown mechanism. Understanding this mechanism has

been one focus of the present numerical study. Therefore, the subharmonic resonance
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mechanism was deliberately excluded by only forcing the fundamental frequency of

20kHz. Despite the absence of a subharmonic resonance, the disturbance devel-

opment in the simulations agrees very well with the experimental findings for the

fundamental frequency for both, the linear and the nonlinear stages. Further, these

simulations show that the nonlinear development is caused by an oblique breakdown

mechanism. This breakdown mechanism was first discovered in simulations (Fasel

et al., 1993) and has not yet been confirmed in any experimental study.

Moreover, asymmetric subharmonic resonance has been studied in detail. Using

LST, it is possible to identify various possible asymmetric, subharmonic resonance

triads for the physical flow conditions of Kosinov's experiments. DNS with small

forcing amplitudes have been conducted in order to study the linear disturbance

development including nonparallel effects resulting from the streamwise growth of the

boundary layer. The primary wave from all subharmonic resonance triads identified

by LST experience strong exponential streamwise amplitude growth. The streamwise

wavenumbers of all triad components are only weakly affected by nonparallel effects,

leading to the conclusion that the same resonance triads discovered using LST are

also present in the DNS with large forcing amplitudes. The results obtained from

several DNS with large forcing amplitudes revealed that the amplitude ratio between

disturbances with both frequencies does not affect the resonance triad, which is in

contrast to the experimental findings. Furthermore, in the simulations, the phase

difference between disturbances of both frequencies plays a more important role since

it influences the absolute value of the maximum generated by the resonance and its

spanwise wavenumber. By changing the phase difference to a certain value, similar

resonance triad as in the experiments and in the theoretical investigation by Tumin

(1996) was observed in the simulations.
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5.6 Hypersonic Flow

For later comparison with the cylindrical and conical geometries, flat-plate simulations

are carried out in order to investigate the influence of cone opening angle and spanwise

curvature. In this chapter, simulations are performed with the after-shock conditions

of the conical experiments (c.f. Stetson et al. (1983)). A direct comparison is still

difficult based on the variation of the boundary-layer values (see Figure 5.29) and the

resulting different unstable frequencies. Relative to the boundary-layer thickness, the

location of the generalized inflection point, which is a criterion for the inviscid instabil-

ity of the boundary layer, collapses for the flat plate and the sharp cone (Figure 5.30).

Therefore one could conclude that it might be possible to capture similar stability be-

havior once the parameters are adjusted. However, the amplification rates of second-

mode waves are much stronger for the cone than they are for the flat plate. Hence,

the downstream development of second-mode disturbance waves with small amplitude

levels (linear behavior) results in five times smaller amplitude levels for the flat plate

than for the cone. For the transition investigations over the flat plate, disturbance

amplitude levels are therefore quintupled in order to (almost) compensate this effect.
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Figure 5.29: Boundary-layer properties. Figure 5.30: Boundary-layer properties
Ma = 6.8, Re = 4, 790,000, T.. = 71K. (normalized with boundary layer thick-

ness). Ma = 6.8, Re = 4,790,000,
T,, = 71K.
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As mentioned in the introduction CON

(1.4.2.2), the findings by Seddougui & FLAT

Bassom (1997) over a circular sharp 0

cone indicated a stronger amplification -'

of first-mode waves with increasing ra- -10. .

dius of the conical cross section, i.e. far
1i6 170 I80 19004 2000

downstream, first-mode waves become

important during the boundary-layer Figure 5.31: Linear amplification rates.

transition process over the cone. Ex- Sharp cone: Ma = 8, Re = 3,333,333, Too =
53.35K, F1 ,0 = 1.17. 10, Al,0 = 1 . 10-3%,

trapolating these findings lead to the F1,1 = 5.85- 10- 1, A1,1 = 1 _ 10-3%, ,I', =
600. Flat plate: Ma = 6.8, Re = 4, 790,000,conclusion that for flat plates, whereT =7KF, 0  8i-,A 1 0  1Too = 71K, F1,o = 8 .10 - 5, A,o = 1 10-3%,

the cross-sectional radius tends to in- F1,1 = 4 10- 5, A 1,1 = 1 . 10-3%, xP1,1 = 600.

finity, first-mode waves might play a

role in the hypersonic boundary-layer

transition.

But Figure 5.6, where linear amplification rates of first-mode oblique and second-

mode two-dimensional waves are plotted over downstream distance, shows that first-

mode waves are not more amplified for the flat plate than they are for the circular

cone. In fact, the first-mode three-dimensional waves are more amplified for the

cone than for the flat plate. In relation to the second-mode waves, the opposite

becomes true. While first-mode oblique waves are just as amplified as second-mode

two-dimensional waves for the flat plate, the second-mode two-dimensional waves for

the circular cone are much more amplified than the first-mode oblique waves. Hence,

not (only) the overall amplification rate might be important in the transition process

(as used in the eN - method) but also waves with amplification rates close to the best

possible amplification rates should be considered.
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5.6.1 Oblique Breakdown

The oblique breakdown played an important role in earlier investigations of supersonic

flat-plate boundary-layer transition investigations (see e.g. Thumm (1991), Chang &

Malik (1993a), and Ei31cr (1995)). With regard to those supersonic investigations, the

hypersonic flat-plate boundary layer is more stable calling for increased disturbance

amplitude levels beyond 1%. Figure 5.32 shows the amplitude distribution of selected

modes for the oblique breakdown of a second-mode wave at a frequency of F = 8. 10-

and a wave angle of 4J = 200. These values are chosen based on the good performance

of linear computations of the primary wave. With a disturbance amplitude of 1%,

weak nonlinear interactions are present. For an equivalent comparison over the conical

geometries, the amplitude level of the primary disturbance is increased to 5% in

Figure 5.33. Higher modes rapidly emerge which are amplified in such a manner that

primary disturbance wave amplitudes are surpassed downstream of R, = 1,800. This

simulation would call for a higher resolution to resolve evolving small-scale structures,

but is omitted at this point for the sake of the main focus of this report-the boundary-

layer transition for circular cones.
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Figure 5.32: Oblique breakdown. Ma = Figure 5.33: Oblique breakdown. Ma =
6.8, Re = 4, 790, 000, T,,, = 71 K, F -- 6.8, Re = 4, 790, 000, T,,, = 71 K, F =
8.10- 5 , A1,j = 1%, TJ = 20 ° . 8- 10- , A1,j = 5%, ID = 20°.
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In the case of comparable disturbance amplitude levels for both the flat plate and

the cone, the oblique breakdown is a stronger mechanism for the flat plate than for

the sharp and blunt cones (c.f. section 7.2 and section 8.2).

5.6.2 Oblique Subharmonic Resonance

First discovered by Kosinov et al. (1994) in their experimental investigations of a

flat-plate boundary layer at Ma = 2, this breakdown mechanism is also important for

fiat-plate flows at hypersonic speeds. Figure 5.34 shows strong nonlinear interactions

shortly downstream of the disturbance slot. Remarkable is the strong amplification of

two-dimensional waves with the subharmonic frequency and its higher harmonics (i.e.

(1,0)-mode, (2,0)-mode, and (3,0)-mode).Although the primary wave amplitudes are

exceeded by higher modes around R, = 1,700, which is slightly upstream than for

the oblique breakdown, it is hard to evaluate if the oblique subharmonic resonance

is a stronger mechanism due to the higher disturbance energy input (two wave pairs

are perturbed for this mechanism instead of one pair for the oblique breakdown).

Therefore, the only conclusion is that the oblique subharmonic resonance is also a

viable candidate for hypersonic boundary layer transition.

If, additionally, a steady streamwise vortex mode is disturbed, the disturbance

amplitude has to be reduced to 2% in order to achieve convergence on the same

computational grid used for the earlier investigations. Therefore, the steady vortex

mode (0,1) enhances the nonlinear interactions of the oblique subharmonic resonance

despite the fact that the forced steady vortex mode (0,1) is neutral throughout the

computational domain (see Figure 5.35). Unfortunately, no conclusions on which

specific modes are influenced by the steady vortex mode can be drawn from this com-

parison because of the different forcing amplitudes. Nonetheless, steady streamwise

vortices enhance the performance of the oblique subharmonic resonance leading to

the conclusion that steady vortices have to be considered for hypersonic the transition
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process.
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Figure 5.34: Oblique subharmonic res- Figure 5.35: Oblique subharmoni res-
onance. Ma = 6.8, Re = 4,790,000, onance. Ma = 6.8, Re = 4,790,000,
Too = 71K, F = 8. 10- 5, A2,1 = 5%, T...= 71K, F = 8. 10- , A2,1 = 2%,

A ,,, = 5% , q 2,1 = 20 .  A 1,j 2% , A ,j = 1% , kP,1 = 20° -

5.6.3 Oblique Fundamental Resonance

Husmeier et al. (2005) discussed this breakdown mechanism for a flat-plate bound-

ary layer at Mach 3. In their investigations, the oblique breakdown of the primary

wave was stronger than any other mechanism and therefore, the oblique fundamental

resonance was a possible but inferior

mechanism. For hypersonic speeds,

this resonance is a viable path to

transition. Figure 5.6.3 shows that -0.
0.0, 1 .. ..... .

higher modes rapidly emerge. Espe- 0, 0.4

0.001 
3

cially the strong amplification of the '4

--O W 2.12

two-dimensional wave at the funda- o 2ooo, -22
U-..2.4

mental frequency, which reaches pri- I ' ,80 2 ' 00

mary disturbance wave amplitude lev-
Figure 5.36: Oblique fundamental resonance.els shortly downstream of the distur- M .,R ,7000 ~=7K
Ma = 6.8, Re 4, 790, 000, To = 712K, F

bance slot, is remarkable. Different to 8 .10 - 5, Al,j 5%, A1,2 = 5%, 411,1 = 20'.



124

the breakdown scenarios discussed ear-

lier, steady vortex modes with different spanwise spacings develop at high amplitudes

and are weakly amplified underlining their important part in the transition process.

To further substantiate this observation, a steady vortex mode (0,1) is forced in Figure

5.37. Again, the overall disturbance amplitudes had to be even further reduced than

for the oblique subharmonic resonance with a steady vortex mode in order to converge

a solution on the used grid. Comparing Figure 5.37 with Figure 5.38 reveals that this

increase in strength of the nonlinear interactions cannot only be linked to the higher

amplitude level of the forced vortex mode (0,1) but also to the stronger amplification

of the two-dimensional wave at the fundamental frequency. While downstream devel-

opment of other higher modes are similar for both cases, the two-dimensional wave

(1,0) reaches 2.5 times higher amplitudes than without the steady streamwise vortex

mode forced.

0 0. - 4 0A .1- i2 1- .2
. , . ...... .. ..... 01 .4790,0 , e . M6... 8. ... . 4.... .7

A0:2 A 1%,2

. ... 1 .0 3. 0 0 0 1 .. .. .

5. 6.4 F-undamenta B
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2.31 2-3
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Figure 5.37: Oblique fundamental res- Figure 5.38: Oblique fundamental res-
onance. Ma = 6.8, Re = 4, 790, 000, onance. Ma = 6.8, Re = 4, 790, 000,
T...= 71K, F 8 8- 10- 5, A1,,1 = 1%, Too = 71 K, F = 8. 10- 5 , A1,1 = 1%,
A1,2 1%, Ao,j 1%, %p1,1 = 200. A 1,2 = 1%, 4f 1,1 = 20° .

5.6.4 Fundamental Breakdown (K-Type)

Before the discovery of the subharmonic breakdown (N-/H-type) in 1984, the funda-

mental breakdown or so-called Klebanoff breakdown was believed to be the driving
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mechanism for incompressible flat-plate boundary layer transition. For compressible

boundary layers at supersonic speeds (Ma < 5), this breakdown did not seem to play

an important role (c.f., for example, Thumm (1991), EiBler (1995), or Chang & Malik

(1994)).

At hypersonic speeds, where the

second-mode two-dimensional waves

are governing the linear stability be- ...

havior (Mack (1984)), the fundamen- o.ow,

tal breakdown might be a suitable can-

didate for boundary layer transition. 0. .- .......
:e.-06

2.1Although the primary two-dimensional [I]
]No 80 2000

waves in Figure 5.39 are disturbed at

5% of the free-stream velocity, the sec- Figure 5.39: Fundamental breakdown. Ma =

6.8, Re = 4,790,000, To, = 71K, F = 8.
ondary oblique waves (1,1) show no 10- 5, A,o = 5%, A, 1 = 1.10-%, TI'l = 600.

signs of a resonance. The amplitude

dip around R. = 1,800 is due to the change in location where the maximum ampli-

tude is taken and therefore a relict of the post-processing tool. Klebanoff et al. (1962)

used spanwise spacer in their experimental investigations and found the fundamental

breakdown through interactions of a streamwise vortex (generated by the spacers)

and a two-dimensional wave. In our simulations, the forcing of steady vortex modes

is not exactly comparable to spanwise spacers because of the local mass addition into

the flow-but can still be seen as a first step towards modeling vortex generators.

Figure 5.40, in which a steady streamwise vortex mode is forced with 1%, reveals

a possible fundamental resonance around R, = 1, 900. Stronger amplification than

the linear eigenbehavior is experienced downstream of that location. Although dis-

turbance amplitudes for the primary and secondary waves equal the latter case, the

overall amplitude level of the secondary wave (1,1) is increased by a factor of 1,000

and thus nonlinear interactions are enhanced. Since this has already been discussed
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in the proceeding breakdown scenarios, one can conclude that a steady streamwise

vortex mode has a strong influence on the nonlinear stability behavior independent of

the underlying mechanisms. Differences to these earlier findings are observed once the

disturbance amplitude of the primary waves and the steady vortex mode are increased

to 5% (Figure 5.41). When comparing Figure 5.41 with Figure 5.40 the amplitude

level of the primary waves decrease because emerging higher modes deplete energy

from them. Since the primary waves are amplified throughout the computational do-

main so that amplitude levels towards the end of the domain reach comparable values

as for the lower disturbance amplitude (1%). Additionally, the amplitude level of the

first higher harmonic of the primary wave, the (2,0)-mode, is strongly reduced by a

combination of the influence of the lower primary wave amplitudes and the presence

of the steady vortex. Also worth mentioning is that when forcing a steady stream-

wise vortex mode in combination with a fundamental breakdown the amplitude level

of the secondary waves (1,1) is elevated to the amplitude level of the steady vortex

mode-a phenomenon, which has not been observed in the investigations before.
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Figure 5.40: Fundamental breakdown. Figure 5.41: Fundamental breakdown.
Ma = 6.8, Re = 4,790, 000, Too = 71K, Ma = 6.8, Re = 4,790,000, Too = 71K,
F = 8 10-5, Al,o = 5%, A,, 1 = 1- 10-3%, F = 8. 10 - 5, Al,o = 5%, A1,1 = 1.10-3%,
Ao,1 = 1%, qf, = 600. Ao1 = 5%, i, = 60'.
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5.6.5 Subharmonic Breakdown (N-/H-Type)

For incompressible boundary layers where the two-dimensional waves are more am-

plified than three-dimensional waves according to the Squire's Theorem, the subhar-

monic breakdown is a strong mechanism governing the transition process for many

applications. Note, that exceptions of Squire's Theorem exist depending on frequency

and downstream location. The hypersonic flat-plate boundary layer, although two-

dimensional waves are most amplified, seems to be stable with respect to the sub-

harmonic breakdown. In Figure 5.42, the secondary wave amplitude is increased by

a factor of 10 in comparison to the fundamental breakdown discussed in the preced-

ing section. The typical dip in amplitude distribution following a sudden increase in

amplification rates associated with the presence of a resonance cannot be observed.

Usually, this behavior is an indication of a possible resonance caused by the locking of

the phase speeds of primary and secondary waves enabling energy transfer between

them. Instead, Figure 5.42 compares the amplitude distribution of the secondary

wave in presence of the primary wave and its linear eigenbehavior (scaled to fit am-

plitude distribution of the secondary wave). Nonlinear growth of the secondary wave
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Figure 5.42: Subharmonic breakdown. Figure 5.43: Subharmonic breakdown.
Ma = 6.8, Re = 4, 790, 000, T,,, = 71 K, Ma = 6.8, Re = 4, 790, 000, T, = 71 K,
F2,o = 8 -10 - 1, A2,0 = 5%, A,,,= F2,o = 8 -10 - 5 , A2,0 = 5%, A1,j
1 10-2% , T91,1 = 60 . 1 10-2% , A ,j = 1% , 1P,i = 60 .
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is present throughout the domain, but emerging higher modes are stabilized towards

the end of the domain. With a forced steady vortex mode (0,1) the secondary wave

might inherit different frequency components and is therefore randomly oscillating

(see Figure 5.43). Moreover, a fundamental resonance between the (2,0)- and (2,1)-

modes is clearly present at R, = 1,800. Although the existence and the location

of the resonance is independent of the secondary wave amplitude, the increase in

secondary wave amplitude level might be responsible for the enhanced fundamental

breakdown when comparing Figure 5.40 with Figure 5.43.

5.7 Summary

For a hypersonic flat-plate boundary layer, two-dimensional second-mode waves are

most amplified according to LST. Their nonlinear amplification rate in the inves-

tigated breakdown scenarios is smaller than for the cone investigations discussed in

section 7 and thereafter. Hence, the disturbance amplitude levels are increased to

approximate the amplitude magnitude of the simulations over a cone for later com-

parison.

With primary disturbance amplitude levels of 5% of the free-stream velocity,

breakdown mechanisms involving second-mode two-dimensional primary waves (K-

and N-/H- Type) do not show strong nonlinear interactions with rapid development

of higher modes which would to some degree indicate the initialization of the tran-

sition process. With a forced steady streamwise vortex mode, nonlinear interactions

are enhanced mainly due to the higher amplitude level of the secondary waves but

still no transition on-set is observed.

Looking at the breakdown mechanisms of oblique waves, i.e the oblique breakdown

and the subharmonic and fundamental oblique resonances, strong nonlinear interac-

tions are present such that generated higher modes reach primary wave amplitude

levels. The wave angle of the primary oblique waves is chosen to be small in order
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to take advantage of the waves' eigenbehavior. At small wave angles, amplification

rates of the oblique waves are almost as strong as the amplification rates of second-

mode two-dimensional waves, i.e. they are strongly amplified. A ranking of these

mechanisms is omitted at this point because on the one hand further investigations

would be necessary requiring finer computational grids and on the other hand these

simulations fulfill their purpose for comparison with cylindrical and conical flow in-

vestigations in order to draw conclusions on how spanwise curvature influences the

stability behavior.
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6. Transition Investigations of a Boundary Layer on a

Cylinder

To better investigate the influence of spanwise curvature, investigations of a cylindri-

cal geometry are discussed in this section. The cylindrical simulations are set-up in

correlation to the conical investigations discussed in section 7. Figure 6.1 illustrates

how the simulations for the cylindrical investigations are constituted in comparison

to the sharp cone investigations. The conical transition investigations are started at

xO ; 0.27 downstream of the (virtual) origin. At that location the radius of the cone

(I?n) is chosen for the radius of the cylinder. Because the boundary layer thickness

develops along the conical surface, the same downstream distance from the origin

is chosen for the cylindrical investigations resulting in a small downstream shift (see

zoom-in of Figure 6.1). The ratio of the boundary layer thickness 6 to the radius of the

cylinder R is an important parameter for this study. The downstream development

of this ratio for the sharp cone investigated in section 7 in comparison to the devel-

opment over the cylinder is depicted in Figure 6.2. Based on the increasing radius of

the cone in downstream direction the ratio 6/R is decreasing because the boundary

layer thickness stays almost constant. Hence, spanwise curvature influences become

less important advancing in the downstream direction. The insert of Figure 6.2 shows

the radius and boundary layer thickness (radius added) over the downstream distance

R . Because R, is the square root of the local Reynolds number, the radius of the

cone develops nonlinearly which explains the nonlinear decrease of the ratio 6/R for

the cone. For the cylinder, however, this ratio increases in downstream direction

because of the growth of the boundary-layer thickness (and the constant radius R).

Furthermore, the cylinder develops a larger boundary-layer thickness which is compa-

rable to the flat-plate boundary-layer thickness (Figure 6.3) and starts therefore at a

larger 6/R-ratio. Due to the similar boundary layer properties in Figure 6.3, the same
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disturbance frequencies as for the flat-plate investigations are chosen. Because linear

amplification rates in Figure 6.4 are similar throughout the computational domain,

differences in the stability behavior of different breakdown scenarios can be directly

linked to the nonlinear influences of spanwise curvature.

0.7

06 I CYI NDER
0.64

0.5 M -

0.4

0 1400 1600 1800 2000

0.2 -........ ............... r
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Figure 6.3: Boundary-layer properties Figure 6.4: Comparison of linear ampli-
for the flat plate, cylinder, and cone. fication rate for the flat plate and the
Flat Plate/Cylinder: Ma = 6.8, Re = cylinder. Ma = 6.8, Re = 4,790,000,
4,790,000, T.. = 71K. Cone: Ma = 8, To = 71K, F1,0 = 8.10', F1,1 = 4-10 - 5 ,

Re = 3,333,333, To, = 53.35K. XIi, - 600.
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6.1 Oblique Breakdown

The oblique breakdown was proven to be a strong mechanism for the flat-plate geome-

tries. For the cylinder, Figure 6.5 graphs the amplitude development in downstream

direction for an oblique breakdown of a second-mode wave forced with a disturbance

amplitude of 1% and a wave angle of I = 20'. Higher modes typically associated

with the oblique breakdown (e.g. (0,2)- and (1,3)-mode) are emerging. Comparison

with Figure 5.32 reveals no significant differences to the flat-plate simulations. As for

the flat-plate simulations, the disturbance amplitude is increased to 5% in Figure 6.6.

Not surprisingly, stronger nonlinear actions arise developing higher modes which reach

primary wave amplitude levels. When compared with the equivalent flat-plate inves-

tigations (c.f. Figure 5.33), nonlinear actions are weakened. The resolution limits are

not exceeded as for the flat-plate simulations despite the fact that primary wave and

waves generated through first/second-level interactions (e.g. mode (0,2), (1,3), and

(2,0)) reach comparable amplitude levels. Because linear amplification rates are not

altered by the presence of spanwise curvature (see Figure 6.4), the spanwise curvature

of the cylinder is obstructing the emerging of higher modes (nonlinear interactions).

To better investigate the influence of

spanwise curvature, the computational

domain is pushed downstream in Fig- 0A

ure 6.7 to increase the J/R-ratio, i.e. 0.01-

increasing the influence of spanwise 0.0o

curvature. Amplitude growth and o.00o,

overall disturbance amplitude level of .4

00 1600 1800 2000

the primary wave are lower than for R

the previous case (c.f. Figure 6.6). Al- Figure 6.5: Oblique breakdown. Ma 6.8,

though some higher modes are gener- Re 4, 790,000, T, = 71K, F = 8 1O-,

ated, they are not strongly amplified A1,1 1%, T = 20.
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so that the development of higher modes is limited. Because the shift in the down-

stream direction stabilizes the primary disturbance waves, it is difficult to distinguish

between a further stabilization through augmented curvature effects or a stabilization

through reduced amplification rates (eigenbehavior of the disturbed waves).

0.1. ..... 0 o
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Figure 6.6: Oblique breakdown. Ma = Figure 6.7: Oblique breakdown. Ma =
6.8, Re = 4,790,000, T = 71K, F = 6.8, Re = 4,790,000, T = 71K, F =
8.10- 5, AI,1 = 5%, 4I = 20-. 8" 10- 5, A, 1 = 5%, If = 200.

6.2 Oblique Subharmonic Resonance

As stated in the proceeding section for the oblique breakdown, the spanwise curvature

has also stabilizing effects on the oblique subharmonic resonance. Although numerous

higher modes emerge, Figure 6.8 only shows little amplitude growth for these develop-

ing higher modes. Since the oblique subharmonic resonance was a strong mechanism

for the fiat-plate (c.f. section 5.6.2), the disturbance amplitude for the cylindrical

investigation is decreased to 2% to allow comparison of the two cases. There might

be still the possibility of an oblique subharmonic resonance with increased distur-

bance wave amplitude levels, but further investigation is omitted since the cylindrical

investigations serve only as a reference case for conical flows.
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6.3 Oblique Fundamental Resonance

The oblique fundamental resonance over a cylinder behaves differently than expected.

Comparing Figure 6.10 with Figure 6.11 show virtually no influence of a forced steady

streamwise vortex mode on the nonlinear interactions. This clearly contradicts knowl-

edge gained from other scenarios and geometries. Note, that the disturbance ampli-

tude levels are also reduced to 2%, as in the oblique subharmonic resonance, to allow

2002 .0401
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Figure 6.10: Oblique fundamental res- Figure 6.11: Oblique fundamental res-
onance. Ma = 6.8, Re = 4,790,000, onance. Ma = 6.8, Re = 4, 790,000,
T, = 71K, F1,1 = 8- 10 - 5, A 1,1 = 2%, T = 71K, F1 1 8 10- 5, A2,1 = 2%,
A,, 2 = 2%, q'2,1 = 20'. A, 2 = 2%, A0,1 1%, '2,1 = 200.
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for comparison with the flat-plate simulations. By comparing Figure 6.11 with Figure

5.37, it can be concluded that the oblique fundamental resonance is also stabilized by

spanwise curvature. It is worth remarking that the oblique fundamental resonance

itself may not be turned off by spanwise curvature, but the disturbance amplitude

levels would have to be increased significantly for the flow to transition. Thus, the

reduced amplitude levels in presence of spanwise curvature seems to be the underlying

stabilizing mechanism.

6.4 Fundamental Breakdown (K-Type)

A weak fundamental resonance around R. = 1,800 exists for the cylinder (see Figure

6.12). The few developing waves are weakly damped downstream of that location so

that the fundamental breakdown is not a viable mechanism. With a forced steady

vortex mode (0,1), the amplitude level and the amplification rate of the secondary

waves are raised in Figure 6.13. But still no rapid amplification of generated higher

modes further advance the transition process. Therefore, it is questionable if this sce-

nario is an important mechanism for the high-speed transition process over cylinders.
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Figure 6.12: Fundamental breakdown. Figure 6.13: Fundamental breakdown.
Ma = 6.8, Re = 4,790,000, Too = 71K, Ma = 6.8, Re = 4,790,000, To = 71K,
F = 8" 10', A1,0 = 5%, A1,1 = 1. 10-3%, F = 8- 10-5, A1 ,0 = 5%, A,j = 1.10-3%,

%P,j = 600. A0,1 = 1%, T1,1 = 60'.
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6.5 Subharmonic Breakdown (N-/H-Type)

In contrast to the fundamental breakdown, there is no resonance between the second-

mode two-dimensional primary wave and an oblique wave at half the frequency taking

place in Figure 6.14. Instead, the secondary wave shows modulations of lower and

higher frequencies. In contrast to the mechanism for the flat plate, the higher har-

monic of the primary wave evolves as well as the two-dimensional wave at half the

frequency (subharmonic). In Figure 6.15 and Figure 6.16, the subharmonic break-

down with forced steady vortex modes at different spanwise spacings are graphed.

Still, there is no subharmonic resonance apparent. But with the presence of the

steady vortex mode at the same wave angle as the secondary wave (Figure 6.15), a

fundamental resonance of the emerging (2,1)-mode with the primary (2,0)-mode is

present. This could have already been observed for the flat plate (c.f. section 5.6.5).

When comparing the subharmonic breakdown with a forced steady vortex mode with

the fundamental breakdown and a forced steady vortex mode (Figure 6.13) emerging

higher modes are weakly more amplified.
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Figure 6.14: Subharmonic breakdown. Ma 6.8, Re 4,790,000, T... 71K,
F2,o = 8- 10- 5 , A 2,0 = 5%, A1,1 = 1 . 10-3%, IVl, = 600.
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Figure 6.15: Subharmonic breakdown. Figure 6.16: Subharmonic breakdown.
Ma = 6.8, Re = 4,790, 000, To = 71K, Ma = 6.8, Re = 4,790,000, T"" = 71K,
F2,0 = 8-10- 5 , A 2,0 = 5%, A1,1 = F2,0 = 8 - 10, A2 ,0 = 5%, A1,1 =

1 . 10-3%, A0 ,1 = 1%, T1,1 = 600. 1 .10-3%, AO,2 = 1%, '1,1 = 60'.

6.6 Summary

The cylindrical stability investigations demonstrate the benefits of DNS, because a

specific parameter, such as the spanwise curvature, can be singled out and its influ-

ence on the stability behavior investigated. Experimentally, this is almost impossible

because effects of the fore body (e.g. attached/detached shock wave) would change

the flow properties eliminating the foundation of an exact comparison.

With DNS, it was possible to construct flow conditions as present in the flat-

plate and cone investigations. It became apparent that the ratio of the boundary

layer thickness to the radius is an important parameter. Values above 20% have a

strong stabilizing effect independent of the studied breakdown scenarios. Because the

boundary-layer thickness is thinner for the conical investigations (starting in section

7) and the radius is linearly increasing in downstream direction, the ratio of boundary-

layer thickness to radius stays below 20%. Therefore, spanwise curvature effects are

weakened for flows over cones so that the geometries under investigation can be ranked

according to their stability behavior from unstable to stable: FLAT PLATE, SHARP

CONE, CYLINDER.
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7. Transition Investigations of a Boundary Layer on a

Sharp Cone

The wind-tunnel conditions of Stetson et al. (1983) are used as flow conditions for the

numerical stability investigations. These flow conditions (before and after the shock)

are summarized in Table 7.1.

flow property Mach Temperature Pressure Reynolds cone shock
number number angle angle

before the shock 8 53.35 K 165.5 Pa 3,333,333 70 10.40

after the shock 6.8 71 K 415.6 Pa 4,790,000

Table 7.1: Flow parameters before and after the shock.

According to LST, second-mode
0 00-

two-dimensional waves are most strongly

amplified under these conditions. This .

fact could have been confirmed in the -.

DNS. Also, oblique waves at small 2 R. 0

wave angles show a similarly strong 4W3

amplification. Figure 7.1 compares

downstream amplitude distribution for
140) 160) 1800 20

a second-mode two-dimensional and R.

second-mode oblique wave at tP = 200. Figure 7.1: Comparison of amplification

Although two-dimensional amplitudes rates at 1 = 0' and '1 = 20'. Ma = 7.95,
Re = 3,333,333, To, = 53.35K, F = 1.17-

exceed amplitude levels of the oblique 10 - 4 .

wave by a factor of 2, amplification

rate of the oblique waves are still strong enough to have second-mode oblique waves

considered for transition investigations. Figure 7.2 has already been discussed in sec-

tion 4.2 for code validation purposes but is repeated here to elaborate the possibility
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of the presence of second-mode oblique waves in the experiments (c.f. Stetson et al.

(1983)). The experimental measurements of wall pressure stagnates downstream of

R, = 1,800. When two-dimensional amplitude levels above 0.1% are being consid-

ered, amplitude levels in the simulations drop due to upcoming higher harmonics

(see Figure 7.3). Once disturbance amplitude levels have reached 1%, these higher

harmonics draw enough energy from the fundamental waves that they become stable.

Looking at the wall pressure of the second-mode oblique wave reveals a slightly dif-

ferent amplitude development in downstream direction. The amplitude starts to level

off shortly after R, = 1, 600 but is not decreasing as strongly at its two-dimensional

counterpart. Nonetheless, amplitude levels lie within the experimental uncertainties

so that large-amplitude second-mode three-dimensional waves might also be present

in the natural transition scenarios of the experiments by Stetson et al. (1983).
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A= 1-10'2 A= 1.10' (2 h i)
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Figure 7.2: Wall-pressure distribution Figure 7.3: Wall-pressure distribution in
in downstream direction of different dis- downstream direction of different distur-
turbance waves. Ma = 7.95, Re = bance waves and their higher harmon-
3,333,333, T.. = 53.35K, F = 1.17- ics. Ma = 7.95, Re = 3,333,333, T,
10-4. 53.35K, F = 1.17. 10-4.

7.1 Pulsed Disturbance

The linear instability of the flow is investigated with simulations where a small-

amplitude pulsed disturbance is introduced into the flow. Because of memory and
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compute power restriction only discrete spanwise modes are disturbed covering wave

angles between i = 0' and it = 800. This leads to the development of a linear wave

packet (in time) containing a broad spectrum of frequencies. The time-dependent

signal, its spectrum, and the response of the flow (receptivity spectrum) is graphed in

Figure 7.4. The flow is most responsive to disturbances around 100kHz which includes

the most dominant frequency (f = 102kHz) reported in the experiments by Stetson

et al. (1983). Due to the linear superposition principle, the amplification (or decay)

of waves with a specific frequency within the wave packet can be extracted using a

Fourier transformation in time. Figure 7.5 depicts the downstream development of

amplification rates for selected frequencies. The wavy character of the amplification

rate distribution for lower frequencies results from the fact that those waves are still

developing downstream of the disturbance slot. Confirming Stetson's experimental

findings, the frequency f = 102kHz reaches the highest amplification rate within the

computational domain. Also, in accordance with the boundary layer thickness (c.f

Figure 4.2a), high frequency disturbances are more amplified at the beginning of the

domain while lower frequency disturbances become increasingly important advancing

in downstream direction. This results in larger instability regions for waves with lower

frequencies. Therefore, looking at the amplitude distribution of the disturbance waves

in Figure 7.6 shows that the amplitude of the waves with frequency f = 102kHz starts

to level off around R. = 1,800 and lower frequencies reach higher amplitudes farther

downstream. Plotting the amplification rates over disturbance frequency for two

different downstream location confirms the shift to lower frequencies in downstream

direction (see Figure 7.7). Because of the large downstream extent of the hypersonic

transition region in experiments, most of the simulations are performed at a frequency

of f = 88kHz to have strong amplification over a wide range of local Reynolds

numbers. This in turn supports breakdown mechanisms through stronger nonlinear

wave interactions.
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Figure 7.4: Spectral input signal of Figure 7.5: Linear amplification rate for
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7.2 Oblique Breakdown

Numerical simulations have shown that the oblique breakdown is a dominant mech-

anism at lower supersonic Mach numbers smaller than five (c.f. Fasel et al. (1993);

Chang & Malik (1994); Husmeier et al. (2005)). However, for flow over cones at higher

Mach numbers (M > 6), simulations show that second-mode two-dimensional waves

are stronger amplified than first-mode oblique waves and the oblique breakdown of

first-mode waves (see Figure 7.8) is therefore an unlikely breakdown scenario. On

the other hand, according to LST, second-mode oblique waves at small wave angles

are almost as strongly amplified as two-dimensional waves (see Figure 7.1). There-

fore, the oblique breakdown of second-mode waves, as suggested by Pruett & Chang

(1995), might also be a viable mechanism. In contrast to the simulations performed

by Pruett & Chang (1995), the wave angle for the present DNS is reduced to 'P = 200

at the inflow which further reduces to T = 70 at the outflow because of the increas-

ing spanwise extent of the computational domain, as graphed in the insert of Figure

7.1. This results in a higher amplification of instability waves than in the case of

Pruett & Chang (1995). As seen from the amplitude distribution of p' in Figure 7.9
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strongly amplified higher modes initiate the transition process towards the end of the

computational domain. The flow structures in Figure 7.10 are different from the X-

patterned structures observed at lower supersonic speeds (c.f Husmeier et al. (2005)).

Instead, the structures show an off-set in azimuthal direction in correlation with the

spanwise wave angle over the first half of the computational domain. Farther down-

stream, these regular flow patterns break up into smaller structures which align in

two azimuthally confined areas associated with the large amplitude of the (0,2)-mode

(see Figure 7.11). In addition, two-dimensional waves are nonlinearly generated and

are highly amplified so that these two-dimensional waves reach comparable ampli-

tude values than the primary oblique disturbance waves. Stetson & Kimmel (1993)

observed in their experiments that breakdown to turbulence occurs downstream of

the largest fluctuation of two-dimensional waves.

Figure 7.10: Oblique breakdown. Vortical structures identified by the Q-criterion (Q
= 500). Ma = 7.95, Re = 3,333,333, T , = 53.35K, F = 1.17. 10 - 4 , A1,1 = 1%,

= 200.

As reported in section 7.1, disturbance waves at a 15% lower frequency than the

dominant frequency in the Stetson experiments experience stronger amplitude growth.

Looking at the p-amplitude distribution in the downstream direction in Figure 7.12
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confirms this enhanced instability behavior also for nonlinear interactions. As stated

for the flat-plate simulations in section 5.6.1, emerging disturbances at the funda-

mental frequency but larger wave angles (e.g. mode (1,3), mode (1,5)) reach or even

surpass amplitude levels of the primary disturbance wave (mode (1,1)). Emanating

flow structures identified by the Q-criterion (Figure 7.13) show an agglomeration of

vortical structures along the afore-mentioned 'streaks.' In Figure 7.14, flow structures

at a higher value of Q = 1, 500 are graphed. Within the merging of flow structures,

a zig-zag pattern located close to the boundary-layer edge prevails. Although these

connections of flow structures appear close to the boundary-layer edge, they leave

an imprint on the wall heat flux as graphed in Figure 7.15a. Figure 7.15b plots the

heat flux distribution close to the boundary-layer edge (y = 6). Despite the highest

magnitude in heat flux occurring close to the boundary-layer edge, its spatial extent

is too confined in order to influence the overall heat flux significantly.

To get an estimate on how far the transition process is advanced, an oblique

breakdown over the flat plate is re-visited with a high-resolution simulation. Due to

the larger boundary-layer thickness and the absence of any additional source terms,

the computational efforts are decreased by an order of magnitude-hence enabling

the computation into the 'fully' turbulent regime. The length of the computational

Figure 7.11: Oblique breakdown. Steady vortical structures identified by the Q-
criterion (Q = 100). Ma = 7.95, Re = 3,333,333, T, = 53.35K, F = 1.17. 10- ,
A1,, = 1%, =20'.
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Figure 7.12: Oblique breakdown. p'- Figure 7.13: Oblique breakdown. Vor-
amplitude distribution. Ma = 7.95, tical structures identified by the Q-
Re = 3, 333,333, T. = 53.35K, F = criterion (Q = 500). Ma = 7.95, Re =
9.8. 10- ', A 1,1 = 1%, q = 260. 3,333,333, T, = 53.35K, F = 9.8. 10',

A1,1 = 1%, T = 26'.

domain in Figure 7.16 has been double compared to the conical investigations in order

to observe breakdown. The emerging of disturbance waves at the fundamental fre-

quency at higher wave angles, i.e. mode (1,3) and mode (1,5), resemble the stability

behavior for the sharp cone. The zig-zag pattern of the flow structures followed by

their merging are very similar to the behavior of the circular cone. Farther down-

stream, it is a striking feature that two-dimensional waves prevail close to the wall

despite the chaotic flow structures close to the boundary-layer thickness (see Figure

7.17).

In the simulations for the sharp, the oblique breakdown shows signs of reaching

the later stages of the transition process downstream of the largest two-dimensional

amplitudes. Additionally, it is believed that the oblique breakdown over a cone will

also fully break down as the flat plate. Thus the oblique breakdown of second-mode

waves cannot be ruled out as a possible path to transition over circular cones at

hypersonic speeds (even in the Stetson experiments). Because no random small-

scale structures can be observed within the computational domain, breakdown to

fully turbulent flow is still not achieved in this simulation. Hence, larger disturbance



146

Figure 7.14: Oblique breakdown. Vor- Figure 7.15: Oblique breakdown. Wall-
tical structures identified by the Q- normal heat flux. a) at the wall. b) at the
criterion (Q = 1,500). Ma = 7.95, Re = boundary-layer edge. Ma = 7.95, Re =
3, 333,333, T,,, = 53.35K, F = 9.8- 10-', 3,333,333, To) = 53.35K, F = 9.8. 10- 5 ,

A 1,1 = 1%, T = 260. A,j= 1%, T = 26'.

amplitudes are necessary for the flow to break down within the computational domain.

For this, however, a significant increase in resolution is required resulting in a much

larger computational grid than the currently afforded 381 million collocation points.
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0.0001F]
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R

Figure 7.16: Oblique breakdown. Flat Figure 7.17: Oblique breakdown. Flat
Plate. p'-amplitude distribution. Ma = Plate. Vortical structures identificd by
6.8, Re = 4,790,000, To, = 71K, F = the Q-criterion (Q = 500). Ma = 6.8,
8.10- 5 , A,1 = 2%, J = 20 ° . Re = 4,790,000, To, = 71K, F 8.

10- 5 , A1,, = 2%, TI' = 200.
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7.3 Oblique Subharmonic Resonance

This mechanism has been investi-

gated experimentally by Kosinov et al.

(1994) for a flat-platc boundary layer oT

at Mach 2. A wave triad is formed 00,

similar to the breakdown scenario de- o, .

scribed by Craik (1971). In order 02

2,5

to fulfill the resonance condition for 4.0

an oblique subharmonic resonance, the R.

wave number of the secondary waves Figure 7.18: Oblique subharmonic reso-

have to add up to the fundamental nance. p'-amplitude distribution. Ma =
7.95, Re = 3,333,333, Too = 53.35K, F2 ,1 =

wave number. The same is true for the 1.17. 10- 4, A2,1 =%, %2,1 = 200, F 1,1 =

frequencies so that, combining both 5.85- 10-5, A 11 = 1%, q/1,1 = 360.

criteria, three waves at different wave

angles 41 must all travel at the same phase speed. Detailed numerical investigations

by Zengl (2005) have shown that this type of breakdown works best when the fun-

damental and subharmonic waves are disturbed in the same spanwise mode with the

same amplitude. The third wave closing the wave triad is then generated through

nonlinear interactions. In our simulations, the amplitude distribution in Figure 7.18

shows that the nonlinearly generated modes are less amplified than for the oblique

breakdown (see Figure 7.9). Although the primary waves amplitude reaches about

twice the amplitude levels of the oblique breakdown (due to the difference in distur-

bance frequency), nonlinear interactions in Figure 7.18 are not as strong as for the

oblique breakdown (c.f. Figure 7.9). Note, that developing higher modes which reach

primary wave amplitude levels are associated with the oblique breakdown and not

with the oblique subharmonic resonance. Therefore, the conclusion that can be drawn

from this comparison is that the secondary waves might be responsible for prevent-



148

ing the strong amplifications of the higher modes for the oblique breakdown-hence

reducing nonlinear interactions. Also looking at the phase speeds and streamwise

wave numbers in Figure 7.19 reveals that the oblique subharmonic resonance is not

a strong mechanism for the sharp cone. Although there is no wave which fulfills the

resonance condition better than the nonlinearly generated wave to close the triad, i.e.

mode (1,2), the resonance condition is still not met perfectly. Therefore, nonlinear

interactions are weakened because the phase speeds only approach each other but do

not lock onto each other. There are no other restrictions on the nonlinearly generated

secondary wave except the spanwise resolution. Because the chosen resolution allows

waves to emerge with a difference in wave angle of 1.50, it is unlikely that a better

combination for this primary wave exist-making the oblique subharmonic resonance

an inferior mechanism for the sharp cone geometry. This statement stays valid even

when steady streamwise vortices are perturbed. The selected modes in Figure 7.20

do not give rise to the assumption that the stability behavior of this resonance is

altered by the presence of steady vortices (even when the disturbance frequency is

optimized). Because of the underlying oblique breakdown, flow structures identified

by the Q-criterion do not show any significant difference for this breakdown (Figure

7.21) in comparison with the oblique breakdown (Figure7.10). Investigations with

larger nose radii will lead to different conclusions so that the oblique subharmonic

resonance is not generally weakened for hypersonic boundary layer flows but only for

the sharp cone geometry.
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7.4 Oblique Fundamental Resonance

Instead of a resonance triad as in the oblique subharmonic breakdown, two waves

at the same frequency but traveling at different wave angles I are perturbed. In

our simulations, the primary waves are disturbed at T1,1 = 200 while the secondary

waves, i.e. the (1,2)-mode, travel at a higher wave wangle of 11,2 = 360.

When the secondary waves are disturbed at a small amplitude level, the influence

of the steady vortex on the second-mode two-dimensional can be observed. Figure

7.22 shows that with increasing amplitude of the secondary waves, the nonlinearly

generated steady vortex (0,1) is increasingly more amplified. As a consequence of

the higher amplification of this steady mode, the second-mode two-dimensional wave

becomes more unstable between R, = 1500 and R, = 1800. Thus, breakdown mech-

anisms involving steady vortices and their impact on the two-dimensional waves are

investigated in the following section.

Once the secondary waves are perturbed with the same amplitude as the primary

waves, strong nonlinear interactions occur resulting in the amplification of higher

modes. Through first-level wave interactions the (0,1)-mode is generated closing a

"triad". One can argue if it is a resonance triad since the steady vortex mode does

not possess any phase speed and therefore the phase speeds of the three involving

i I

(a) A1 2  0.0001%. (b) A1 2 = 0.001%. (C) A1 2 = 0.01%.

Figure 7.22: Oblique fundamental resonance. p'-amplitude distribution. Ma = 7.95,
Re = 3,333,333, T.. = 53.35K, F = 1.17 - 10', A1,1 = 1%, TI'l = 200, 'P1, 2 = 360.
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waves cannot match. Nonetheless, the forcing of this steady vortex mode influences

the stability behavior significantly as graphed in Figure 7.23. The reason for this

very good performance lies in the phase speed. Figure 7.24 reveals that the resonance

condition is exactly fulfilled throughout the computational domain. It should be

mentioned that the oblique subharmonic resonance without forcing of the steady

streamwise vortex mode is still a viable breakdown mechanism, but it is the presence

of the steady vortices which makes the oblique fundamental resonance a stronger

mechanism than the oblique breakdown for the sharp cone.

Evolving flow structures, graphed in Figure 7.25, reveal commonalities and dif-

ferences to previously discussed cases. A main difference is the distortion of flow

structures along the centerline of the computational domain. The steady streamwise

vortex mode seems to be responsible for this behavior although it could not have been

observed for the oblique subharmonic resonance with a forced steady vortex mode.

Additionally, vortex structures travel farther downstream along the centerline so that

not all structures are confined in two regions towards the end of the computational

domain as seen e.g. for the oblique breakdown. Nonetheless, this splitting of flow

structures in two confined regions towards the end of the computational domain is

a general characteristic of the breakdown mechanisms involving three-dimensional

primary waves. Also, transition occurs within both of these areas-the structures

along the centerline seem to be more stable. The detailed view (insert in Figure 7.25)

shows rapid development of small-scale structures. Although the spanwise resolution

is increased to 129 modes resulting in over 473 million collocation points, a higher res-

olution is necessary in order ro resolve all emerging structures. Despite the enormous

computational power available through the National Leadership Computer Systems

(NLCS) initiative this simulation pushes the limits of the SGI Altix 4700 system with

2048 CPUs-the simulation ran 3 months on 600 CPUs continually. Hence, this case

will hopefully re-visited at a later point in time when even bigger computer systems

become available.
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Figure 7.23: Oblique fundamental reso- Figure 7.24: Oblique fundamental reso-
nance. p'-amplitude distribution. Ma = nance. Phase speed. Ma = 7.95, Re =

7.95, Re =3,333,333, T,, = 53.35K, 3,333,333, T,, = 53.35K, Fj,j 9.8-
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Figure 7.25: Oblique fundamental resonance. Vortical structures identified by the
Q-criterion (Q = 500). Ma = 7.95, Re = 3,333, 333, T.. = 53.35K, F1,1 = 9.8. 10',
A,,, = 1%, A1,2 = 1%, Ao,j = 1%, 'II, = 200, qf1,2 = 36'.
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7.5 Breakdown Mechanisms involving steady vortices

To further investigate the influence of the steady vortex mode on the second-mode

two-dimensional wave, we performed simulations at two different wave angles-T =

200 and T = 600. For T = 200, Figure 7.26 shows that the strength of the nonlinear

interactions are dependent on the disturbance amplitude of the steady mode. But

even for the high amplitude of A0,1 = 1%, the two-dimensional primary wave is

unaffected by the presence of the steady vortex mode. This result contradicts the

findings in the the previous section where the generated (0,1)-mode has an angle of

T = 20' and did have an influence of the generated two-dimensional wave. At this

point it is hypothesized that the discrepancies arise from the fact that both waves are

nonlinearly generated and not specifically disturbed (as in this section).

For I = 60', the steady vortex (0,1) and the oblique fundamental waves (1,1)

indicate a possible fundamental resonance with the second-mode primary waves (1,0)

around R, = 1, 900 (see Figure 7.27). Because this disturbance set-up simulates

the experimental disturbance method used by Klebanoff et al. (1962), the fundamen-

tal (K-type) breakdown mechanism may be a possible participant in the transition

process.

The presence of steady oblique vortex modes increase the amplitude level of first-

mode waves even more than for second-mode waves-thus further enhancing nonlinear

interactions. This in turn accelerates the transition process through stronger ampli-

fication of higher modes. Nonetheless, the resonance mechanisms, if present, are not

strongly affected by the steady vortices. Hence, increasing the threshold of the dis-

turbance wave amplitudes may results in a similar effect as the presence of steady

vortices.
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Figure 7.27: Steady vortex mode. p'-amplitude distribution. Ma =7.95, Re=
3,333,333, T,,= 53.35K, F =1.17. 10-4 A1,0 1%, 4I'0,1 600.
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7.6 Fundamental Breakdown (K-type)

Based on the knowledge gained in the previous section, the fundamental resonance

between a primary two-dimensional wave and a small amplitude oblique wave might

play a role in the transition process of hypersonic boundary layers over circular cones.

Figure 7.28 shows a departure in the amplitude growth of the secondary waves (mode

(1,1)) from linear behavior beginning at R,, = 2,000. Because this location is close to

the outflow and the resonance is weak, amplification of higher modes is marginal in

the present investigations. If, additionally, a steady vortex mode (0,1) is disturbed at

a large amplitude, the secondary wave amplitude and amplification is augmented and

nonlinear interactions are enhanced (see Figure 7.29). Although the phase speed of

the primary and secondary waves in Figure 7.30a agree well throughout the domain,

the resonance with and without a perturbed steady vortex mode is weak. But forcing

of a steady streamwise vortex mode enhances the resonance itself since the phase

speeds at the location of the resonance (R, = 2,000) match exactly (Figure 7.30b),

while without a forced steady streamwise vortex the phase speeds diverge at the

0 0.1
0.00.0
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Figure 7.28: Fundamental breakdown. Figure 7.29: Fundamental breakdown.
P '-amplitude distribution. Ma = 7.95, p!-amplitude distribution. Ma = 7.95,
Re = 3,333,333, T,, = 53.35K, F =9.8- Re = 3,333,333, T,.= 53.35K, F=
10-5, Al,o = 1%, A,,1 = 0.00M%,IP1,1 9.8 -i0-5, Al,o 1%, A,,, = 0.001%,
600. Ao,j = 1%, q/ij~ 60'.
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Figure 7.30: Fundamental breakdown. Phase speed. Ma = 7.95, Re 3,333,333,
To, = 53.35K, F = 9.8- 10- 5, A1,0 = 1%, A 1,1 = 0.001%, ij, = 600.

resonance location to approach each other again downstream of R, = 2,000 (Figure

7.30a). Despite the positive effect of the steady vortex mode on the secondary oblique

waves, the steady vortex mode does not significantly alter the amplification rate of

the two-dimensional primary waves.

As mentioned in the introduction (c.f. section 1.3.1), a phase shift of r in the

wall-normal phase distribution for the pressure indicates a second-mode wave. Figure

7.31 graphs the wall-normal phase distribution of the pressure eigenfunction for two

different downstream locations with and without the forcing of a steady streamwise

vortex mode. It is apparent that upstream of the location of the resonance the

secondary waves are of a first-mode character independent if a steady vortex mode is

forced or not. Downstream of the resonance location, the secondary wave transforms

into a second-mode wave. Therefore, second-mode secondary waves are investigated

to see if they result in a stronger resonance. But, in Figure 7.32 amplitude levels

of the secondary waves decrease downstream of R, = 2,000 so that second-mode

secondary waves seem to have no important role in the transition process.

Because not only is the equality of phase speeds important but also the rela-
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Figure 7.31: Fundamental breakdown. Wall-normal phase distribution. Ma = 7.95,
Re = 3,333,333, T, = 53.35K, F = 9.8-10-5, A1,0 = 1%, A 1,1 = 0.001%, T1,1 = 60'.

tive phase between disturbance waves, the forcing signal of the secondary waves has

been adjusted. To assure that the generated disturbance waves travel in phase with

each other, a phase shift of AO = 1.93511 has been introduced. Amplification of

the secondary waves is stronger upstream of the resonance location in Figure 7.33

when compared with Figure 7.28. Therefore, more energy is transferred to the sec-

ondary waves when they are synchronized with the primary waves. Unfortunately,

the resonance is not enhanced so that the fundamental breakdown is still an inferior

mechanism to breakdown scenarios involving second-mode three-dimensional waves.

Instead of disturbing with the phase difference, increasing the disturbance ampli-

tude of the primary waves to 5% has shown a more promising result. The maximum

primary wave amplitude reaches about 40% of the corresponding free-stream value.

Because primary amplitude levels impact the resonance behavior, the resonance lo-

cation moved upstream to R., = 1, 800 and the nonlinear amplification thereafter is

significantly enhanced (Figure 7.34). Figure 7.35 shows the 'classical' steps to tran-

sition as described in section 1.2. The increasingly three-dimensional variation of the

two-dimensional rollers in downstream direction results in A-vortices which are then
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Figure 7.32: Fundamental breakdown. Figure 7.33: Fundamental breakdown.
p'-amplitude distribution. Ma = 7.95, p-amplitude distribution. Ma = 7.95,
Re = 3,333,333, To, = 53.35K, F = Re = 3,333,333, T,, = 53.35K, F =
9.8 . 10- , Al,o = 1%, A1,1 = 0.001%, 9.8 -10', Al,o = 1%, A1,, = 0.001%,
ql = 20'. qI', = 60', AO = 1.93511.

stretched by the different amplification rates of the peak and valley stations. Based

on these findings it is concluded that the compressible fundamental breakdown in-

corporates the same physical mechanisms as the incompressible counterpart. Hence,

the massively stabilizing effect of compressibility, which can be mainly attributed to

the high wall temperature, causes no change in flow physics but calls for a very high

disturbance energy input.

Temporal Direct Numerical Simulations (TDNS) are performed to confirm the

possibility of a fundamental resonance. To this end, base-flow profiles from a spatial

simulation at R. = 2, 000 are chosen for the base flow of the TDNS. Figure 7.36

shows the amplitude development over time for the secondary waves (mode (1,1)).

After t = 8.0, amplification higher than exponential growth can be observed proofing

the possibility of a fundamental resonance. The base-flow profile in Figure 7.37 at

t = 8.0 incorporates a steeper wall-normal gradient than the initial base-flow profile

causing the strong amplification. This change of the base-flow profile can be linked

to the arising steady streamwise vortex mode (0,1). The amplitude decrease after

t = 14.1, can be attributed to the temporal base-flow treatment. Although the
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Figure 7.34: Fundamental breakdown. Figure 7.35: Fundamental breakdown.
pI-amplitude distribution. Ma = 7.95, Vortical structures identified by the Q-
Re = 3,333,333, T.. = 53.35K, F = criterion (Q = 500). Ma = 7.95, Re =
9.8 . 10- , A1,0 = 5%, A1,1 = 0.001%, 3,333,333, T, = 53.35K, F = 9.8. 10- ,
A0 ,1 = 1%, qI,'m 600. A1,0 = 1%, A, 1 = 0.001%, II,l = 60 °.

growing steady streamwise vortex mode (0,1) further changes the base-flow profiles,

the upward movement of the boundary-layer edge is unphysical and therefore the

stabilization can be linked to be an artifact of the temporal approach.

Thus, although second-mode two-dimensional waves are most strongly amplified

and the possibility of a fundamental resonance exists, the significance of the funda-
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Figure 7.36: Fundamental breakdown. Figure 7.37: Fundamental breakdown.
Temporal DNS. p'-amplitude develop- Temporal DNS. p'-base-flow profiles
ment in time. Ma = 7.95, Re = at different times. Ma = 7.95, Re =

3, 333,333, T. = 53.35K, F = 9.8.10i 5, 3,333,333, T... 53.35K, F = 9.8- 10- 5,

A1,0 = 1%, A1,1 = 0.001%, I1,1 = 60'. A1,0 = 1%, A1,1 = 0.001%, APIj = 60 °.
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mental breakdown in the nonlinear stages of the transition process is less pronounced.

Nonetheless, in an environment with strong steady vortices (e.g. isolated roughness)

or under conditions where large two-dimensional amplitude levels could be reached

(e.g. cooled walls), the fundamental breakdown (K-type) might become an important

breakdown mechanism.

7.7 Subharmonic Breakdown (N-/H-type)

In their temporal DNS over sharp cir-

cular cones under conditions of the

Stetson experiments, Pruett & Zang

(1992) claimed to have found a subhar-

monic resonance of second-mode pri- - ..

mary waves with oblique secondary

waves. Stetson & Kimmel (1993) revis-

ited their experimental data and were 0 R I"

unable to confirm the existence of a Figure 7.38: Subharmonic breakdown.

subharmonic breakdown. Performed Phase speed. Ma = 7.95, Re = 3,333,333,

DNS only show a very small depar- T, 53.35K, F = 9.8 -10-5, A2,0  1%,
A1,1 = 0.001%,qjl,l = 60'.

ture from the linear eigenbehavior of

the secondary wave downstream of R, = 1,900 concluding that a subharmonic res-

onance is possible but so weak that it is practically untraceable in the (noisy) ex-

periments. Figure 7.38 plots the phase speed for the subharmonic breakdown and

in comparison with the fundamental breakdown (c.f. Figure 7.30), the phase speeds

are farther apart making the subharmonic breakdown a weaker mechanism than the

fundamental breakdown. Therefore it is questionable if the subharmonic breakdown

may play a role in the transition process for conical geometries.
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Figure 7.39: Subharmonic breakdown. Figure 7.40: Subharmonic breakdown.
p'-amplitude distribution. Ma = 7.95, p'-amplitude distribution. Ma = 7.95,
Re = 3,333,333, To, = 53.35K, F = 9.8- Re = 3,333,333, Tw = 53.35K, F =
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600. A0,1 = 1%, Ij = 600.

More importantly, if the steady 0.0 ,,,

A.. 70%]vortex mode (0,1) is forced in addi- 00075

tion to the primary (2,0) and the sec-

ondary waves (1,1), nonlinear inter- 0.005

actions are more pronounced (Figure o.W25

7.40). This leads to the conclusion R ,1 R.2,050

that in the presence of large amplitude 0 0.5 1.5 I 2 0 0.5 .52

steady vortices, oblique waves (first- Figure 7.41: Comparison of mean-flow pro-

mode waves upstream of the resonance files with and without steady vortex mode.
Ma = 7.95, Re = 3,333,333, T,o = 53.35K,

location) play a crucial role in hyper- F = 1.17- 10- 4 .

sonic breakdown scenarios. The forc-

ing of mode (0,1) also affects the subharmonic resonance. Nonlinear amplitude growth

of the secondary wave increases downstream of the resonance location but stays be-

low significant values. The reason for the better performance of the subharmonic

resonance when a steady streamwise vortex mode is additionally forced might not

be due to a better matching of phase speeds (see Figure 7.42) as observed for the
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fundamental breakdown (c.f. section 7.6). Because the steady vortex mode worsen

the quality of the signal so that the phase speeds become unusable, the phase speeds

are not conclusive for this case. Instead, the change in mcan-flow profiles (Figure

7.41) might be responsible for the higher amplification of the subharmonic secondary

waves. The deviation in the base-flow profiles around y = 0.004 with and without

a steady vortex mode forced is likely linked to the emerging of stronger amplified

higher modes. Because Figure 7.40 also indicates the presence of a fundamental reso-

nance between the (2,0)- and the (2,1)-mode which occurs at higher amplitude levels

than the subharmonic resonance, the change in base-flow profiles might be caused

by this fundamental resonance. Thus, the fundamental breakdown might enhance

the subharmonic breakdown, although the amplitude level of the secondary waves

with fundamental frequency (2,1) decrease downstream of the resonance location

(R, = 2,000). Even with the better performance when a steady streamwise vortex

mode is forced the subharmonic resonance is still an unlikely candidate for conical

boundary-layer transition at hypersonic speeds.

F--2jiL. -2.' ' ' ' '.0001 :
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,i i ;i fle-17
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Figure 7.42: Subharmonic breakdown. Figure 7.43: Comparison of subharmonic
Phase speed. Ma = 7.95, Re = breakdown with fundamental break-
3,333,333, T,, = 53.35K, F = 9.8. 10- , down. p'-amplitude distribution. Ma =
A 2 ,0 = 1%, A1,1 = 0.001%, A 0 ,1 = 1%, 7.95, Re = 3,333,333, Too = 53.35K,
q,11 = 60'. F = 9.8 • 10- 5, Aprimary = 1%,

Asecondary = 0.001%,Iseo y = 600.
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For a direct comparison of the fundamental and subharmonic resonance, the fun-

damental breakdown (from the previous section) and the subharmonic breakdown,

both with a forced steady streamwise vortex mode, are plotted in the same graph

(Figure 7.43). In Figure 7.43, the nonlinearly generated fundamental secondary wave

(2,1) is higher amplified than the specifically disturbed wave from the fundamental

breakdown. This stronger amplification can be explained by the fact that the sec-

ondary waves (2,1) are in phase with the primary waves (2,0). This is not the case,

when the secondary wave is explicitly forced without specifying a phase shift (c.f.

section 7.6). But towards the end of the computational domain amplitude levels of

both fundamental secondary waves reach similar values.

If the subharmonic secondary waves (mode (1,1)) are disturbed in phase with the

primary waves, the instability of the secondary waves is increased until the subhar-

monic waves are damped downstream of the resonance location. As for the funda-

mental breakdown, the weak resonance is not stronger amplified by the phase shift

in the disturbance signal.

Temporal DNS confirm the very weak resonance behavior of a subharmonic

breakdown in Figure 7.44 which shows the secondary-wave amplitude distribution

over time. Doubling the disturbance frequency (specifying half the streamwise wave-

length) result in amplitude levels of the secondary wave which are comparable with

the primary wave amplitudes. The linear behavior in the logarithmic plot (Figure

7.45) shows that the high amplitude levels are reached by exponential growth, i.e.

the eigenbehavior of the wave and thus no subharmonic resonance is present. This

leads to the conclusion that the subharmonic breakdown (N-/H-type) is even less

important than the fundamental breakdown (K-type).
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ment in time. Ma = 7.95, Re = development in time. Ma = 7.95, Re =
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7.8 Summary

Second-mode waves are essential for hypersonic boundary layer transition for the

sharp cone. Thus low-frequency waves and/or waves with large wave angles do not

contribute to the general stability behavior. Although Stetson et al. (1983) stated that

first-mode waves become increasingly important for the later stages of breakdown,

first-mode waves in the simulations are only generated through nonlinear interactions

late in the transition process and always stay far below primary amplitude distur-

bance levels. Therefore, three-dimensional and two-dimensional second-mode waves

control boundary layer transition for this configuration. Simulations with a pulsed

disturbance reveal that a lower frequency as reported in the experimental findings

by Stetson et al. (1983) experience an overall stronger amplification. The oblique

breakdown of second-mode waves at a small wave angle is a strong mechanism under

investigation. For this breakdown, steady streamwise vortices and two-dimensional

waves typically rise up to primary disturbance levels. Transition is initiated down-

stream of the maximal amplitude levels as Stetson et al. (1983) has observed it in their
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experiments. Because Stetson et al. (1983) did not perform any three-dimensional

measurements and the wave angle in the simulation drops below T = 100, it might

be possible that an oblique breakdown is present in the experiments.

When a steady streamwise vortex mode is disturbed at high amplitude, nonlinear

interactions are generally enhanced. The oblique fundamental resonance experiences

the largest improvement making this type of breakdown the strongest mechanism for

high-speed boundary layers over sharp circular cones.

Although a fundamental resonance of a second-mode two-dimensional wave with

an oblique first-mode wave is possible, this resonance is too weak to play an important

role for the sharp circular cone. The subharmonic breakdown performs even worse.

Further fine-tuning of the mechanisms involving two-dimensional primary waves (e.g.

wave angle, phase shift, etc.) does not result in a significant stability change. There-

fore, the fundamental and subharmonic breakdown are inferior mechanisms for "cold"

wind-tunnel conditions. But they might become important when steady streamwise

vortices or cooled walls are present.
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8. Transition Investigations of a Boundary Layer on a

Blunt Cone (RN = 0.15")

The nose radius is chosen according to the experiments by Stetson et al. (1984). The

nose radius of RN - 0.15", which is a 100 times larger than the sharp cone radius,

is the smallest radius under consideration for the investigation of the effects of nose

bluntness. Resulting after-shock conditions are summarized in Table 8.1. Base-flow

flow property Mach Temperature Pressure Reynolds cone shock
number number angle angle

before the shock 8 53.35 K 165.5 Pa 3,333,333 70 120
after the shock 6.85 69.3 K 387.2 Pa 4,730,000

Table 8.1: Flow parameters before and after the shock.

profiles of different quantities are plotted in Figure 8.1 for three downstream loca-

tions in comparison with profiles for the sharp cone. The profiles for the blunt cone

approach the profiles for the sharp in downstream direction so that the influence of

the nose radius mainly affects the front section of the cone. Maxima in Figure 8.2

determine the location of the generalized inflection point which also approaches the

location for the sharp cone in the downstream direction. Although the generalized in-

flection point is a main criterion in determining second-mode instability, the stability

behavior of the blunt cone does not recover to the sharp cone behavior as discussed

in the following section. Stetson et al. (1984) claim the entropy layer responsible for

this change in stability behavior. The entropy layer results from a detached shock

wave for blunt geometries. While over a small region in the vicinity of the nose tip

a normal shock with high entropy generation exist, there is an oblique shock wave

away from the nose section with a weaker entropy generation. This results in a layer

of higher entropy flow after shock (entropy layer), which is usually higher than the

boundary layer thickness in the vicinity of the nose. Because the height of the entropy
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layer is decreasing in downstream direction and the boundary-layer thickness is in-

creasing, there is a possibility that the boundary layer merges with the entropy layer

somewhere over the frustum of the cone-the so-called swallowing length. Stetson &

Kimmel (1992) report for this nose bluntness that as long as the entropy layer is not

swallowed by the boundary layer, amplification rates drop below values for the sharp

cone and therefore stabilize the flow.

3 n0.3Rr.1 n ,

(a) R. = 1,372. (b) R = 1,763. (c) R, =2,083.

Figure 8.1: Base-flow profiles. Comparison of blunt cone with sharp cone for three
different downstream locations. Ma = 7.95, Re = 3,333,333, T = 53.35K.

It is our opinion that there might be another explanation for this altered stabil-

ity behavior for the blunt cone. According to LST, the wall temperature influences

second-mode instability waves-cooling the wall destabilizes the second-mode waves

(c.f. section 1.3.1). Because the total temperature is conserved for the shock but

velocities after a normal shock are slower than after an oblique shock, the static tem-

perature after a normal shock is higher than after an oblique shock wave. Figure 8.3

compares wall temperatures for the blunt and the sharp cone with the wall tempera-

ture for the blunt cone being 5K to 20K higher than for the sharp cone. Therefore,

the second mode, which governs the stability behavior of hypersonic boundary layer

flows, is more unstable for the sharp cone than for the blunt geometry. However,

this seems to contradict the statement made in the introduction (c.f. 1.1) that large

nose radii reduce the heat flux into the wall. This is true under the assumption of

isothermal walls. But in case of the adiabatic wall considered in the simulations, the
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heat flux is zero and therefore a rise in wall temperature is the logical consequence.
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Figure 8.2: Simplified generalized inflec- Figure 8.3: Linear amplification rate for
tion point criterion for three different lo- different frequencies. Ma = 7.95, Re =

cation in comparison with sharp cone re- 3, 333,333, T, = 53.35K, q, = 20'.
sults. Ma = 7.95, Re = 3,333,333,
To, = 53.35K.

8.1 Pulsed Disturbance

As for the sharp cone, a small-amplitude pulsed disturbance is introduced into the

flow to investigate the linear stability behavior for a circular cone with a small nose

radius. Figure 8.4 shows that, with an equivalent input signal for the pulse, the flow

responses in the same way over the disturbance slot for the blunt and the sharp cone.

Hence, the receptivity of the flow seems not to be altered by the nose bluntness.

But the downstream development of the disturbances are different. Figure 8.5 shows

resulting amplification rates for selected frequencies. In comparison with Figure 7.4

the maximal amplification rate is reached at a farther downstream location than for

the sharp cone. Thus, a cone with a small nose bluntness is stabilized as reported in

the experiments by Stetson et al. (1984), although the maximum amplification rate

in both cases (for the sharp and the blunt cone) reaches comparable values.

For a better comparison of the stability behavior of a sharp and a blunt cone,

amplitude distribution are plotted in Figure 8.6 for the sharp (solid) and the blunt
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Figure 8.4: Spectral input signal of Figure 8.5: Linear amplification rate for
pulsed disturbance. Ma = 7.95, Re = selected frequencies. Ma = 7.95, Re =

3,333,333, Tw = 53.35K, T = 200. 3,333,333, Tc, = 53.35K, IP = 20.

cone (dashed). For each frequency, the blunt cone amplitude levels are lower than for

the sharp cone-the higher the frequency the larger the difference in amplitude. This

shift of high amplification to lower frequencies can be explained by the increase in

boundary-layer thickness (see Figure 8.7). Figure 8.7 graphs boundary-layer values

for the blunt (dashed) and the sharp cone (solid). The integral properties of the

boundary layer (e.g. the displacement thickness) in Figure 8.7 are not as strongly

influenced as the boundary layer thickness, mainly due to the presence of the entropy

layer up to about R. = 1, 700.

Figure 8.8 plots the amplification
0.01:

rates over frequency at two different F- .......

downstream locations for the blunt
0,001-

and the sharp cone. For both loca-

tions in Figure 8.8, the sharp cone is
0.00|

unstable to higher frequencies than the

blunt cone. For the upstream loca-
1600180 2000

tion (R. = 1,600) in Figure 8.8a, the R

blunt cone is only unstable to a small Figure 8.9: Comparison of T'-amplitude dis-

frequency band between 75kHz and tribution. Ma = 7.95, Re = 3,333,333,Tb = 53.35K, F = 9.8 .10 - , Ip = 00.
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95kHz. High frequency noise pene-

trating into the boundary layer (as in wind-tunnel experiments) would decay, further

contributing to a more stable configuration for the blunt cone. Farther downstream,

at R. = 1, 900, the blunt cone and the sharp cone experience their maximal ampli-

fication at the same frequency with the amplification rate for the blunt cone only

slightly lower than for the sharp cone. Therefore, most breakdown scenarios are in-

vestigated at a frequency of f = 88kHz, the same frequency as for the sharp cone,

to take advantage of the waves' eigenbehaviors and in order to allow a direct com-

parison with sharp cone results. Figure 8.9 compares the amplitude distribution for

disturbance waves at F = 9.8. 10 - (f = 88kHz) over the blunt and the sharp cone.

From their similar linear amplitude distribution follows that significant differences in

the investigated breakdown scenarios are nonlinear effects of the nose bluntness.

8.2 Oblique Breakdown

Because the higher boundary-layer thickness for the blunt cone decreases the un-

stable frequency range when compared with the sharp cone, first-mode disturbance
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Figure 8.8: Linear amplification rate plotted over frequency for different downstream
locations. Ma = 7.95, Re = 3,333,333, T, = 53.35K, 1 = 20'.

waves may become important in breakdown scenarios for the blunt cone. Although

the oblique breakdown mechanism of first-mode disturbances (Figure 8.10) involves

stronger interactions than for the sharp cone (c.f. Figure 7.8), the amplitude levels

are still too low for breakdown to occur. With the low degree of nonlinear actions

present in the oblique breakdown of first-mode waves, the emerging two-dimensional

wave at twice the disturbance frequency is remarkably amplified. This wave consti-

tutes a second-mode wave so that the oblique breakdown of a second-mode oblique

wave at a small wave angle is investigated next.

In contrast to the sharp cone, finite-amplitude second-mode oblique waves (Figure

8.11) result in weaker nonlinear interactions confirming the stabilizing effects of small

nose radii observed in the experiments (c.f. Stetson et al. (1984)). For comparison, the

waves in the simulations for the blunt and the sharp cone are disturbed with the same

amplitude and frequency (as reported in the experiments by Stetson et al. (1983)).

The resulting lower amplitude levels for the blunt cone weaken nonlinear interactions

and hence also reduce the amplitude levels of the generated higher modes. The larger

boundary-layer thickness of the blunt cone with resulting lower unstable frequencies
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is the main stabilizing factor in this comparison. Other parameters influencing the

stability behavior include (but are not limited to) the shock location (longer distance

between wall and shock stabilizes), entropy layer (as suggested by Stetson et al.

(1984)), and the wall temperature.

8.3 Oblique Subharmonic Resonance

Due to the observed increase in the amplification of first-mode oblique waves in the

previous section, investigations of breakdown mechanisms involving first-mode waves

are also considered in order to clarify if these waves play a role for this breakdown

mechanism.

The oblique subharmonic resonance of a first-mode wave triad shows some non-

linear interactions as seen in Figure 8.12. However, as mentioned before in case of

the oblique breakdown, the amplitude levels remain low and it is questionable if the

oblique subharmonic resonance of first-mode waves is strong enough to lead to break-

down of the flow. If, in addition to the wave triad, a steady vortex mode (0,1) is per-

turbed (Figure 8.13), nonlinear interactions of first-mode waves are more pronounced
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Figure 8.12: Oblique subharmonic reso- Figure 8.13: Oblique subharmonic reso-
nance. p'-amplitude distribution. Ma = nance. p'-amplitude distribution. Ma =
7.95, Re = 3,333,333, To = 53.35K, 7.95, Re = 3,333,333, T.. = 53.35K,
F = 4.9- 10-5, A2,1 = 1%, A1,1 = 1%, F = 4.9- 10- 5, A2,1 = 1%, A,, 1 = 1%,
qj2,1 = 700, T1,1 = 800. A 0,1 = 1%, 4f2,1 = 700, I/1,1 = 800.

as already discussed for the sharp cone in section 7.6. The strong amplification of

the (4,0)-mode in Figure 8.13, which even exceeds the primary wave amplitude levels

by a factor of three, is associated with a second-mode two-dimensional wave. Thus,

the oblique subharmonic resonance of second-mode waves with small wave angles,

which are known to be almost as amplified as second-mode two-dimensional waves,

is investigated in Figure 8.14. In comparison with the equivalent breakdown scenario

for the sharp cone (c.f. Figure 7.18), the impact of the nose radius on the nonlinear

interactions is only minor. Therefore, the oblique subharmonic resonance of second-

mode waves gains in importance for the blunt cone relative to the oblique breakdown

which is stabilized by the small nose radius (c.f. section 8.2). As can be seen in

Figure 8.15, the forcing of the steady streamwise vortex mode (0,1) in addition to the

subharmonic wave triad results in even stronger nonlinear interactions. Based on the

comparison of Figure 8.14 with Figure 8.15, the steady vortices rise the primary waves

((2,1)-mode) amplitude levels. This observation stands in contrast to the stability be-

havior of the sharp cone where the second-mode waves were mostly unaffected by the

presence of steady vortices. Also, the forcing of the steady vortex mode (0,1) results
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nance. p'-amplitude distribution. Ma = nance. p'-amplitude distribution. Ma =
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in a stronger resonance triad. Although phase speeds in Figure 8.16 and Figure 8.17

are not exactly matching, the phase speed of the nonlinearly generated secondary

wave (1,2) agrees better with a forced steady vortex mode (Figure 8.17) than without

its presence (Figure 8.16). Looking at the resulting flow structures in Figure 8.18 and

05 1400 I60 I000 2005 22'00 T00 601 00

R. R

Figure 8.16: Oblique subharmonic reso- Figure 8.17: Oblique subharmonic reso-
nance. Phase velocity. Ma = 7.95, Re = nance. Phase velocity. Ma = 7.95, Re =
3, 333,333, T,, 53.35K, F =9.8. 10-', 3,333,333, T,, 53.35K, F = 9.8. 10',
A 2,1 = 1%, A,,, = 1%, 'P'2,1 = 20', A 2 ,1 = 1%, A,, 1 = 1%, Ao,j1  1%,
TI'l, = 360. kP'2,1 = 200, TI'l, = 36'.
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Figure 8.19 shows that forcing of a steady vortex mode moves the splitting of the flow

structures upstream. Based on the enhanced nonlinear interactions in presence of a

forced steady streamwise vortex mode, the resulting flow structures in Figure 8.19

breakdown in smaller scales than without the explicit forcing of the steady vortex

mode (Figure 8.18). Once breakdown is initiated over the blunt cone, developing flow

structures resemble the results for the sharp cone results in Figure 7.21.

Figure 8.18: Oblique subharmonic resonance. Vortical structures identified by the
Q-criterion (Q = 500). Ma = 7.95, Re = 3,333,333, T, = 53.35K, F2,1 = 9.8. 10- ,
A 2,1  1%, i2,1 = 200, F1,1 = 4.9- 10- , A 1,1 = 1%, 11,1 = 36-.

Figure 8.19: Oblique subharmonic resonance. Vortical structures identified by the
Q-criterion (Q = 500). Ma = 7.95, Re = 3,333,333, T = 53.35K, F2,1 = 9.8- 10- 5,

A 2,1 = 1%, T2,1 = 200, F1,1 = 4.9- 10-', A 1,1 = 1%, Ao,1 = 1%, i1j = 360.
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8.4 Oblique Fundamental Resonance

The investigation of an oblique fundamental resonance of first-mode waves in Figure

8.20 and Figure 8.21 does not conclude any new findings. Therefore, second-mode

waves govern the stability behavior of a hypersonic boundary layer over a circular

cone with small nose bluntness.
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Figure 8.20: Oblique fundamental reso- Figure 8.21: Oblique fundamental reso-
nance. p'-amplitude distribution. Ma = nance. p'-amplitude distribution. Ma =
7.95, Re = 3,333,333, Too = 53.35K, 7.95, Re = 3,333,333, T, = 53.35K,
F = 4.9. 10 - 5 , A 1,1 = 1%, A1, 2 = 1%, F = 4.9- 10 -

5, A,, 1 = 1%, A1 ,2 = 1%,
qI1,1 = 700, q 1,2 = 800. A0,1 =1%, 1,1 = 700, X1I,2 = 80'.

For the sharp cone, the oblique fundamental resonance of second-mode waves is

a very strong mechanism. The small nose radius of the blunt cone has also stabiliz-

ing effects for this breakdown mechanism. Because the phase speeds of primary and

secondary waves in Figure 8.22 agree even better than for the oblique subharmonic

resonance (c.f. Figure 8.16), stronger nonlinear interactions and more rapid develop-

ment of emerging higher modes can be observed in Figure 8.23 when compared with

Figure 8.14. For the blunt cone, the main difference of the oblique fundamental reso-

nance to other mechanisms under investigation is that a forcing of a steady streamwise

vortex mode does not improve nonlinear interactions. Although phase speeds of dis-

turbed waves agree at least as well as without the presence of a perturbed steady

vortex mode (compare Figure 8.22 with Figure 8.24), developing higher modes (e.g.
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the (1,4)-mode) do not reach as high amplitude levels in Figure 8.25 as without the

forced steady strearnwise vortex (see Figure 8.23).
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Figure 8.24: Oblique fundamental reso- Figure 8.25: Oblique fundamental reso-
nance. Phase velocity. Ma = 7.95, Re = nance. p'-amplitude. Ma = 7.95, Re =

3, 333, 333, T,,, = 53.35K, F =9.8~ 105, 3, 333,333, T, = 53.35K, F = 9.8~ 10-,
A,,, = 1%, A1,2 =1%, Aq1] 201, A, 1,, 1%, A1 ,2 = 1%, Ao,j 1%,
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8.5 Fundamental Breakdown (K-type)

Because second-mode two-dimensional waves are far stronger amplified than first-

mode two-dimensional waves, further investigation of breakdown scenarios of primary

first-mode waves is omitted.

As known from investigations on the sharp cone geometry, the fundamental break-

down involving second-mode waves might be a viable mechanism. Figure 8.26 and

Figure 8.27 both illustrate the possibility of a fundamental resonance at R. ; 2,000.

While Figure 8.26 reveals only weak nonlinear interactions, Figure 8.27 shows ampli-

fied higher modes if the steady vortex mode (0,1) is disturbed at a high amplitude.

For the wave angle of T = 41', most of the higher modes saturate and decay along

with the primary disturbance wave (1,0). If the secondary wave angle is increased to

q, = 600, a resonance in Figure 8.28 exists only very weakly around R. Z 2, 000. But

if the steady streamwise vortex mode (0,1) is also disturbed (Figure 8.29), nonlinear

interactions are greatly enhanced. The secondary (1,1)-wave is stronger amplified and

the resonance at R. = 2,000 is more pronounced. Towards the end of the computa-

tional domain, emerging higher modes are amplified so that the forcing of the steady

streamwise vortex mode has a bigger impact on the fundamental (K-type) breakdown

than it has on other mechanisms discussed for the blunt cone. Although no strong

resonance is visible and amplitude levels of the different higher modes range over

several orders of magnitude, the fundamental breakdown (K-type) is a candidate for

further considerations in the investigation of breakdown scenarios for the blunt cone.
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8.6 Subharmonic Breakdown (N-/H-type)

In experiments on a flared cone, researchers like Chokani (1999) or Shiplyuk et al.

(2003) reportedly found a subharmonic resonance of a second-mode two-dimensional

wave with a secondary oblique wave at half the frequency. So far, a subharmonic res-

onance of two-dimensional primary waves with oblique secondary waves has not been

discovered within the parameter space of experimental and computational investiga-

tions for a circular cone. Simulations are performed with the most amplified frequency

for the primary disturbance wave. Although the secondary wave amplitude in Fig-

ure 8.30 dips around R. = 2, 000, linear amplification rates are recovered thereafter.

Therefore, a resonance is not present. This fact stays true even when a steady stream-

wise vortex mode (0,1) is forced. As for the sharp cone, Figure 8.31 shows a possible

fundamental resonance, but amplification of the subharmonic secondary waves is not

altered. Hence, even the destabilization of second-mode two-dimensional waves in

the presence of a steady vortex mode does not lead to a subharmonic breakdown.

Therefore, it is speculated that other parameters like adverse pressure gradients or

the presence of GSrtler vortices favors the subharmonic breakdown on flared cones.
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Figure 8.30: Subharmonic breakdown. Figure 8.31: Subharmonic breakdown.
p'-amplitude distribution. Ma = 7.95, p'-amplitude distribution. Ma = 7.95,
Re = 3,333,333, Too = 53.35K, F = Re = 3,333,333, T,, = 53.35K, F =
9.8. 10- 5, A 2 ,0 = 1%, A1,1 = 1. 10-3%, 9.8. 10', A 2,0 = 1%, Al,, = 1 • 10-3%,

T =60'. A0,1 = 1%, T= 600.
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8.7 Summary

The overall stabilizing effects of a small nose radius reported by Stetson et al. (1984)

could have been confirmed in the DNS. Especially, the amplification of high fre-

quency waves is greatly reduced because of the larger boundary layer thickness. In-

terestingly, the frequency with the highest amplification rate along the computational

domain seems not be influences by this increase in boundary-layer thickness and does

therefore not significantly differ from the frequency for the sharp cone.

Based on the stabilizing effects of the nose bluntness nonlinear interaction are

weakening independent of the breakdown mechanism under investigation. As already

observed for the sharp cone, nonlinear interactions are enhanced through of forcing

steady streamwise vortex modes. Their impact on the stability behavior is more pro-

nounced than for the sharp cone. Therefore, it is essential for a steady streamwise

vortex to be present in order to see strong nonlinear behavior with the computational

domain. Compared to the results, the steady streamwise vortex modes gain in im-

portance for the blunt cone. The oblique subharmonic and fundamental resonances

seem to be least influenced by the stabilizing effects of the nose radius. Hence, the

strongest mechanism within the scope of the investigations is the oblique fundamen-

tal resonance, although forcing of a steady streamwise vortex mode does not further

enhance this mechanism.
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9. Transition Investigations of a Boundary Layer on a
Blunt Cone (RN = 0.7")

The largest nose radius studied in this investigation is also the largest nose radius

in the experimental effort by Stetson et al. (1984). Stetson et al. (1984) observed a

transition reversal, i.e. when compared with the transition on-set for the sharp cone,

transition for the blunt cone with a large nose radius moved upstream. Numerical

efforts by e.g. Rosenboom et al. (1999) or Zhong (2005) did not reveal this trend. In

their simulations, transition moved downstream with increasing nose radius. While

experimental and other numerical efforts used a unit Reynolds number of Re/ft =

2.5- 106, the unit Reynolds number in this investigation is reduced to Re/ft = 1 • 106

(Re = 3,333,333) to allow for a direct comparison of results obtained in chapter 7

and chapter 8. Resulting after-shock conditions at the inflow of the computational

domain are summarized in table 9.1.

flow property Mach Temperature Pressure Reynolds cone shock
number number angle angle

before the shock 8 53.35 K 165.5 Pa 3,333,333 70 100
after the shock 6.0 81.6 K 590.2 Pa 4,350,000

Table 9.1: Flow parameters before and after the shock.

To elaborate differences in the stability behavior for the cone with a large nose

radius in comparison to cones with sharp nose tips and small nose radii a discussion

of the flow conditions after the shock and their downstream development follows.

Figure 9.1 compares the edge Mach number along the computational domain for all

three nose radii. Up to the location Rx = 1, 700, the edge Mach number is below

the Mach numbers of the other two configurations which should slightly increase

the amplification rates of second-mode waves. Remember that according to LST,

the amplification rates of second-mode waves are highest when they are generated
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around Ma = 4 and then drop with increasing Mach number. The comparison

of boundary-layer properties in Figure 9.2 shows a dramatic increase in boundary-

layer thickness. As mentioned for the small nose radius, it is hard to distinguish

between entropy-layer and boundary-layer thickness so that this increase can be partly

attributed to the higher entropy-layer thickness. In fact, Figure 9.3 gives rise to the

assumption that the entropy layer is not being swallowed by the boundary layer

over the downstream extent of the computational domain. Despite this discovery,

the frequency of (unstable) disturbance waves should decrease significantly over the

unstable frequencies for the other two nose radii.
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Figure 9.1: Edge Mach number compar- Figure 9.2: Comparison of boundary-
ison. Ma = 7.95, Re = 3,333,333, layer thickness and displacement thick-
T, = 53.35K. ness for different nose radii. Ma = 7.95,

Re = 3,333,333, T = 53.35K.
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9.1 Pulsed Disturbance

When the same pulsed disturbance used for earlier investigations is introduced into

the wall through a blowing and suction slot, not a single amplified disturbance wave

could be observed. Varying the wave angle 4f and pulse duration to favor first-mode

waves did not result in any different discoveries. This seems to confirm findings

of other numerical efforts and does not explain the transition reversal as seen in

experiments (c.f. Stetson et al. (1984)). Looking at the wall temperature distribution

in Figure 9.4 shows a strong increase over the entire computational domain which

stabilizes the flow. But the wall temperature is unlikely to have such a strong impact.

Moreover, the strong stabilization of the boundary layer over the cone with a large

nose radius can be explained by Figure 9.5. In Figure 9.5, the wall-normal location

of the generalized inflection point and of the critical layer are plotted for all conical

geometries investigated. While for the sharp cone and the cone with small nose

bluntness, the generalized inflection point lies on top of the critical layer, the opposite

is true for the cone with a large nose bluntness. According to LST, it is a sufficient

condition for an unstable subsonic disturbance wave to exist that the location of

the generalized inflection point is above the location of the critical layer (Y, > yo).

Because wall blowing and suction will only result in waves traveling with a phase

speed less than the free-stream velocity, subsonic waves are generated through the

disturbance slot at the wall. Hence, all waves are stable. For such a scenario, that

the critical layer is above the generalized inflection point, so-called regular or non-

inflectional waves traveling with a phase speed between 1 < c < 1 - 1, i.e. aMa'

subsonic disturbance which is faster than the free stream, might be unstable according

to LST. If these waves are actually amplified for the cone with a large nose bluntness,

the observed transition reversal in experiments will be logical because only natural

disturbances, i.e. noise radiated from the environment onto the cone, were considered.

Investigations involving regular disturbances can be found in section 9.3.
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9.2 Breakdown Mechanisms of Slow Subsonic Disturbance Waves

Results described in this section are comparable to the breakdown mechanisms dis-

cussed for the sharp cone in section 7 and for the cone with a small nose radius in

section 8. The lack of linear amplification of primary waves (as discussed in the pre-

vious section) might not necessarily result in an absence possible resonances. Since

no strong interactions are observed, detailed discussions of each breakdown scenario

is omitted. Instead, special features and differences to the investigations for the cone

with the sharp nose tip and the small nose radius are shortly summarized on the basis

of the oblique breakdown and the oblique fundamental resonance.

9.2.1 Oblique Breakdown

Disturbance amplitude levels are increased to 5% of the free-stream velocity in order

to compensate for the non-existing instability mechanisms and nonlinear interac-

tions to occur. Despite this large disturbance amplitude no resonances are observed

within the scope of the investigations. But Figure 9.6 for the oblique breakdown at

4I = 550 reveals a strong amplification of two-dimensional waves at the subharmonic
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frequency with its higher harmonics emerging. Due the high-amplitude levels of the

(0,2)-mode, nonlinear interactions produce the unsteady oblique disturbance waves

at the frequency of the two-dimensional waves (1/2,2), (1,2), (3/2,2), etc. When

combinations of these modes are disturbed individually in a fundamental (K-type) or

a subharmonic (N-/H-type) breakdown, neither a resonance nor the strong amplifi-

cation of involved waves can be observed. This fact stays true even when the steady

streamwise vortex mode (0,2) is additionally forced at high amplitudes. Reducing the

disturbance frequency and the wave angle results in overall higher amplitude levels

in Figure 9.7. No breakdown occurs but steady streamwise vortex modes at large

wave angles are amplified. For the breakdown scenarios with a small nose radius, we

know that steady streamwise vortex modes have a stronger impact on the instability

of the flow than for the sharp cone. Hence, with increasing nose radius steady vortex

modes become more unstable and their wave angles, at which the vortex modes are

amplified, also seem to increase with respect to the nose radius.
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Figure 9.6: Oblique breakdown. p'- Figure 9.7: Oblique breakdown. p'-
amplitude distribution. Ma = 7.95, amplitude distribution. Ma = 7.95,
Re = 3,333,333, T, 53.35K, F = Re = 3,333,333, Too = 53.35K, F =
8.7. 10', A 1,1 = 5%, T = 550. 3.625 -10- , A1,1 = 5%, TI = 20'.
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9.2.2 Oblique Fundamental Resonance

The oblique fundamental resonance reaches the highest amplitudes levels within the

scope of the transition investigation of slow subsonic disturbance waves. Again, steady

streamwise vortex modes at various wave angles are strongly amplified in Figure 9.8.

Here, strongly is in relation to the amplification rate of the steady vortex modes in case

of the sharp and the small-nose bluntness cones where the steady vortex modes were

mainly neutral or weakly amplified. Compared to second-mode amplification rates

experienced for the other two geometries, the steady vortex modes in the presence of

the large nose bluntness are less amplified. As observed for the oblique breakdown in

Figure 9.6, two-dimensional waves at half the frequency and their higher harmonics

are strongly nonlinearly amplified. When a steady streamwise vortex mode is also dis-

turbed amplitude levels are raised although the forced (0,1)-mode is stable throughout

the domain (see Figure 9.9). Note, that forcing steady streamwise vortex modes at

higher wave angles results in a poorer performance of the oblique fundamental reso-

nance because the amplification rates of those steady modes decrease when they are
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Figure 9.8: Oblique fundamental reso- Figure 9.9: Oblique fundamental reso-
nance. p-amplitude distribution. Ma = nance. p'-amplitude distribution. Ma =
7.95, Re = 3,333,333, T = 53.35K, 7.95, Re = 3,333,333, T = 53.35K,
F = 3.625. 10 - , A,,1 = 5%, A, 2 = 5%, F = 3.625- 10- , A,, = 4%, A1,2 = 4%,
qj,i = 200. A0,1 = 2%, %I',l = 200.
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explicitly forced. It is also noted that in presence of the steady streamwise vortex

mode (0,1), the amplification rates of the two-dimensional waves (e.g. mode (1/2,0),

mode (3/2,0),...) drop in comparison to the case without the perturbed steady vortex

mode.

9.3 Breakdown Mechanisms of Regular Disturbance Waves

As mentioned in the introduction (see section 1.3.1.1) a regular disturbance travels

faster than the free stream. In comparison with subsonic waves, the regular distur-

bance waves do not require the generalized inflection point to be present and are

therefore also called non-inflectional waves. The regular disturbance waves cannot be

generated with a wall blowing and suction slot, which mainly excites vortical modes.

Therefore, disturbances are generated in the free stream between the boundary and

the entropy layer (see Figure 9.10).

Simulations show an unstable region downstream of the disturbance generation.

The downstream extent of this instability region is influenced by the height where the

disturbances are introduced (see Figure 9.11). A farther distance to the boundary-
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Figure 9.10: Schematic of introducing Figure 9.11: Regular disturbance. p'-
free-stream disturbances. amplitude distribution for two different

heights. Ma = 7.95, Re = 3, 333,333,
T,, = 53.35K, F = 3.625. 10- , A1, 1
0.01%, *1,1 = 200.
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layer edge results in a longer instability region in the downstream direction. Note,

that since the entropy layer is not swallowed by the boundary layer, disturbances

penetrating into the boundary layer are not amplified. Thus, the entropy layer is

solely responsible for the stability behavior of the blunt cone with a large nose radius.

The simulation of an oblique breakdown with a disturbance amplitude of 1%

(Figure 9.12) shows that waves of the fundamental frequency at higher wave angles

are amplified farther downstream and thus extending the instability region. Because

of the relatively short downstream extent of the instability region, even for high

disturbance locations, the amplitude levels are further increased to 3% in Figure 9.13.

An interesting fact is that the frequency of the most unstable subsonic disturbance

wave (c.f. section 9.1) also results in the most unstable regular disturbance wave. Due

to the poor receptivity behavior of the entropy layer to the introduced disturbances,

amplitude levels of the primary wave are initiated at 0.5% resulting in a maximum

amplitude of about 1.5%. Transition on-set for the sharp and blunt cone with a

small nose radius could be observed for maximum amplitude levels of about 20%

(c.f. chapter 7 and 8). Hence, the flow of the blunt cone with a large nose radius is

drastically destabilized to regular disturbances. Although transition is initiated for in
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Figure 9.12: Oblique breakdown. p'- Figure 9.13: Oblique breakdown. p-
amplitude. Ma = 7.95, Re = 3,333,333, amplitude. Ma = 7.95, Re = 3,333,333,
T.. = 53.35K, F = 3.625. 10 - , A 1,1 = T = 53.35K, F = 3.625. 10- 5 , A,, =

1%, q'ij = 200. 3%, kP1,1 = 200.
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Figure 9.13, a transition reversal however cannot be observed yet-mainly due to the

low disturbance amplitude levels. Despite the strong amplification of two-dimensional

waves, no fundamental nor subharmonic resonance could be discovered. Hence, it is

concluded that oblique waves govern the stability behavior at hypersonic speeds.

9.4 Summary

For the first time, the discrepancy between experimental findings and numerical cfforts

for a circular cone with a large nose bluntness could be explained. Due to the change

of the location of the critical layer with respect to the location of the generalized

inflection point, unsteady subsonic disturbances excited by wall blowing and suction

are completely stable along the computational domain. Based on that discovery,

results from other numerical efforts could be confirmed. The transition reversal as

observed in experiments (c.f. Stetson et al. (1984)) is most likely caused by the natural

disturbance environment where sound radiated from the turbulent wind-tunnel walls

penetrates through the shock and entropy layer into the boundary layer. Simulations

where disturbances are introduced in the free stream reveal a drastically reduced

critical Reynolds number. Due to the poor receptivity behavior of the entropy layer

to the introduction of regular disturbance waves, disturbance levels exceeding 3% are

necessary to observe the transition reversal present in the experiments.
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10. Conclusions

10.1 Supersonic Flow at Mach 2

Transition in a supersonic flat-plate boundary layer at Ma = 2.0 has been investi-

gated using DNS following the experimental studies by Kosinov et al. (1994). In the

experimental studies, Kosinov et al. (1994) discovered a new breakdown mechanism,

which they called asymmetric subharmonic resonance, where oblique waves with the

frequency of 20kHz resonate with two oblique subharmonic waves of different span-

wise wave numbers. Scrutinizing the experimental data, however, also suggests the

presence of a different breakdown mechanism. Understanding both mechanisms has

been the focus of our present numerical study. By deliberately excluding the sub-

harmonic resonance mechanism from the transition process it was possible to show

in the simulations that this second breakdown mechanism, which was not reported

by the experimentalists, has the features of oblique breakdown. If confirmed by the

experimentalists, this would be the first experimental evidence of oblique breakdown

in a supersonic boundary layer.

Moreover, asymmetric subharmonic resonance has been studied in detail. Using

LST, it was possible to identify various asymmetric, subharmonic resonance triads for

the physical flow conditions of Kosinov's experiments. The streamwise wave numbers

of all triad components are only weakly affected by nonparallel effects, leading to

the conclusion that the same resonance triads discovered using LST are also present

in the DNS with large forcing amplitudes. The results obtained from several DNS

with large forcing amplitudes revealed that the amplitude ratio between disturbances

with both frequencies does not affect the resonance triad, which is in contrast to the

experimental findings. Furthermore, in the simulations, the phase difference between

disturbances of both frequencies plays a more important role since it influences the

absolute value of the maximum generated by the resonance and its spanwise wave



193

number. By changing the phase difference to a certain value, a similar resonance

triad as in the experiments and in the theoretical investigation by Tumin (1996)

could be observed in the DNS.

10.2 Hypersonic Flow at Mach 8

The nonlinear stages of breakdown over a flat plate, a cylinder, and a cone have

been studied. The main focus has been on the circular cone geometry and the ef-

fects of spanwise curvature and nose bluntness. The simulations are based on the

experimental conditions by Stetson et al. (1983) to allow for a direct comparison with

experimental findings for validation purposes. Additionally, further insight of the un-

derlying physical mechanisms can be extracted from the simulations in order to draw

conclusion on the stability behavior present in the natural disturbance environment

of the experiments.

To elaborate the effects of spanwise curvature, breakdown mechanisms for the

flat-plate and the cylinder geometry are compared. Second-mode primary waves,

three-dimensional and two-dimensional, govern the stability behavior for these ge-

ometries. First-mode waves only seem to play a minor role in initiating the transition

on-set. Independent of the breakdown mechanism under investigation, spanwise con-

vex curvature is reducing nonlinear interactions. Although linear amplification rates

for the circular cone exceed amplification rates for the flat plate, the flat plate is non-

linearly the most unstable of these three geometries. Modes generated by nonlinear

interactions are more numerous and also more strongly amplified for the flat plate

than for the cylinder and the circular cone. Because spanwise curvature effects over

the cone with its increasing radius and its almost constant boundary-layer thickness

decrease in downstream direction, the front part of the slender cone is responsible for

the increased stability. Therefore, the cylinder is the most stable configuration based

on the considered ratio of the boundary-layer thickness to the radius.
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Independent of geometry, steady streamwise vortex modes are destabilizing. When

steady streamwise vortex modes are generated through a first-level interaction, as in

the oblique fundamental resonance or fundamental breakdown (K-type), the destabi-

lizing effects are exceptionally pronounced. This may be due to the stronger ampli-

fication of first-mode waves. Second-mode two-dimensional waves are virtually unaf-

fected by the presence of the steady vortex mode and second-mode three-dimensional

waves are only noticeably altered for the cone with a small nose radius. But the pro-

foundly stronger amplification of first-mode waves, specifically for the fundamental

breakdown, did not accelerate the transition process. Transition has to be already

initiated as for the oblique subharmonic resonance before the stronger amplification

of first-mode wave further pronounce the instability.

Considering the effects of nose bluntness on the stability behavior of a circular

cone, three different nose radii following the experiments by Stetson et al. (1984), are

studied-the sharp cone (RN = 0.0015"), a small nose radius (RN = 0.15") and a

large nose radius (RN = 0.7"). For the sharp circular cone and the cone with a small

nose radius, second-mode three-dimensional waves, which travel more slowly than the

free stream (subsonic disturbance), govern the stability behavior. The flow over the

cone with the large nose radius is unstable to regular, non-inflectional disturbance

waves. Conclusions for each nose radius are summarized as follows:

SHARP CONE: An oblique breakdown of second-mode waves as reported by

Pruett & Chang (1995) shows strong nonlinear interactions and allows for the con-

clusion of the start-up of the transition process. But the strongest mechanisms within

the scope of this investigation is the oblique fundamental resonance when a steady

streamwise vortex mode is also present. Without the forced steady vortex mode,

high-amplitude secondary waves, for both the oblique subharmonic and the oblique

fundamental resonance (thus independent of their frequency), inhibit energy transfer

to higher modes which reduces their amplification.
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BLUNT CONE (RN = 0.15"): The nose radius mainly affects the stability be-

havior of the front part of the cone. This in turn confirms the stabilizing effect as

reported in the experiments by Stetson et al. (1984). The larger boundary-layer thick-

ness reduces the unstable frequency range. Although linear amplification rates for a

far downstream location are close to rates for the sharp cone, nonlinear interactions

for all investigated breakdown scenarios are weakened. The destabilizing effects of

steady streamwise vortex modes become increasingly important for all mechanisms

except for the oblique fundamental resonance. As for the sharp cone, the oblique

fundamental resonance is characterized by strong amplification of generated higher

modes. Despite the fact that the developing higher modes are not quite as strongly

amplified as for the sharp cone, the transition on-set will also eventually occur for

the cone with a small nose radius-even though the destabilizing effects of a steady

streamwise vortex mode are reduced for this breakdown.

BLUNT CONE (RN = 0.7"): For the largest nose radius under investigation the

stability characteristics obtained from numerical simulations by other investigators

differ from those observed in experiments. The so-called transition reversal observed

in experiments by Stetson et al. (1984) could not be found in numerical investigations

by Rosenboom et al. (1999) or Zhong (2005).

In our investigations when disturbances were introduced through a blowing and

suction slot at the wall confirmed the above mentioned numerical results, i.e. increas-

ing the nose radius stabilized the flow. Our detailed investigations of the stability of

the base-flow profiles revealed the possibility of "fast" instability waves-so-called reg-

ular disturbances (c.f. Mack (1984)). Small-amplitude (linear) stability investigations

based on these regular disturbances, which are perturbed outside the boundary layer,

show a short downstream instability region between R, = 1, 200 and R. = 1, 400

for these waves. With increasing disturbance amplitude, developing higher modes at

larger wave angles are amplified farther downstream, therefore extending the insta-

bility region. With a high disturbance amplitude of 3% of the free-stream velocity
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transition is initiated. Because natural disturbances penetrated into the boundary

layer in the experiments by Stetson et al. (1984), disturbances traveling faster than

the free stream are also present. Based on our numerical results, the transition rever-

sal observed in the experiments is caused by these "fast" disturbance waves explaining

the discrepancies between earlier numerical and experimental investigations.
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Appendix A: List of Vectors and Coefficients in the Gov-

erning Equations

Defining the sum of internal and kinetic energy as the total energy per unit volume

in non-dimensional form

Et -p ,,(_ )M2+ UkUk (A.1)

together with the non-dimensional equation of state

pT

YMa 2  (A.2)

results in the following vectors for the equation:

aU0 1 [Oh2 h3E Ohlh 3F Ohlh 2G 1
+ - + -a + [- + H =O. (A.3)

with

P
PU

U= pv (A.4)
Pw
Et

pu

pu2 + p- T
E ± puv - TC 7 (A.5)

pUW - J6
(Et + p)u - ur - Vrt, - w-r + q 1

PV

puw - r ,
F =7 + + p - 7w;Th 7 (A.6)

PVW - TM±
L( Et + A)v - uTO, - vr,, - w".. + Ti

PW
PUW - 7,60

G =PVW - T,17 (A. 7)
pw 2 + p - 'T P

(Et + p)w - urc, - v,, -- rwo + qp
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H = H1 -- H2, (A.8)

where
0

h (puv - T ) + h 2  (puw -

Hi, h3  (puv - Tr,) + h- (pvw - T,) (A.9)

h2%a'I (pUW - -r&) + h, -"I (Pvw - 7T")
0

and
0

h3% p, (pV 2 +p-,)+h 2 %' (pw 2 +p-7-)

H 2 - h3 --h (pU2 + p _-rc) + hi (pW2 + p _-ro) (A.10)
h 2 -- (p

2 + p -)-h (p
2 + p-r)

0

The normal stresses are computed with

Ta (2e - e,- e,, )
S2 (2e,, - - e,p ) (A.11)

r -L-!(2ev - e e,, ),

where

_ L L -I - W h q2 + _ oa, ( A .1 2 )rM'I- h20v N 
- 
h2h 9 hh 0

ho + W ne,ov - h3 9 hh---3 ) h2h 3  0

The shear stresses become

-r Re hia +h2  h28l \hi (T

-24 o (. haa( ( (A.13)Re h3O () + h g)C T
Reh2 on hj h h3 (wh

and the heat fluxes result in

_ I OT
Qy1Ma RePr hji

A -L a(A. 14)q7- (-y -)Ma2RePr h2 07"
%0 1 1 aT
q = ( -)MaRePr h3 aWo
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The radius r is defined as r= sina + ,q cosa and therefore the hi-factors are:

Circular Cone
hi= 1
h= 1 (A. 15)

h3 = r

Elliptical Cone

hi COS2 a + if
2

.

a2  + (A. 16)

h3 =r CS
2
(+ e-13in2 ,

h3 = rV (J-e 2 sin2 WF-p)

with the eccentricity

where a and b are the major and minor axis of the ellipse, respectively.
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Appendix B: Postprocessing of Simulation Results

B.1 Amplitude Distribution Plots

Whenever amplitude plots are presented in this work, they are based on the maximal

density amplitude within the flow field. Figure B.1 in which amplification curves of

different flow quantities are graphed, reveals that the curves computed from the u- and

v-velocity deviate significantly from those computed from other (mostly conservative)

quantities and may therefore not be representative of the overall stability behavior.

0.001

0-

-0.001 L!iV
S-0.002-

-0.003 /

-0.004

-0.005 ,I,
1600 1800 2000

R

Figure B.1: Two-dimensional amplification rate based on various flow quantities.
Ma = 7.95, Re = 3,333,333, T. = 53.35K, F = 1.17- 10- 4 , A1 ,0 = 0.001%.

To obtain the density amplitude distribution, a Fourier transformation in time, the

maximum in wall-normal direction of the density amplitude is taken for each down-

stream location. Because simulations for the flat-plate and the cylinder are computed

with the flow conditions after the conical shock, amplitude levels also represent the

relative magnitude of the disturbance waves in relation to the free stream of the mean

flow. For the cone simulations, flow quantities are normalized with pre-shock condi-

tions so that plotted values have to be divided by the density of the mean flow after

the shock in order to obtain the relative magnitude of the disturbance wave to the

mean flow (after the shock).
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B.2 Vorticity

Although the vorticity does not appear explicitly in our formulation of the governing

equations, equation (2.6), it is often calculated to aid identifying vortical structures.

For the present work, the vorticity is defined as the negative curl of velocity.

w = -v x u (B.1)

or, in scalar form,
1 Oh2v Oh3w

h 2 h 3 aW ar7

1 9h3w Ohju
y -= h h3  O 09o

1 Oh,u _9h 2v
Wz = hih2 (97 19

The total vorticity is defined as the absolute value

W,= V(2+ L)2+ 2

B.3 Q-criterion

This so-called Q-criterion is the second invariant of the velocity gradient Vu. It can

be interpreted as the balance between strain and rotation. If rotation prevails strain,

the Q-criterion is positive and per definition of Jeong & Hussain (1995) a vortex

core is identified. A more thorough derivation for compressible (conical) flows with

application of the Einstein summation convention follows:

Q= 1 (p 2 + WJWj - SjSj) , (B.2)

with
ui j  1 Oui +Oui 1 1 Ou( i Ouj N

Oxj = 2 axj- Oxi W i 2 \x Ox /"
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In the incompressible case, P incorporates the continuity equation and is therefore

zero. In the compressible case, p 2 cancels with terms of SjjS,j so that the equation

for the Q-criterion simplifies to

W2
1 (?2 1w3 + wM3- (S,12 1 ,3 23 ) (B3)

with Wij = 0.

In curvilinear coordinates the individual terms of the equation (B.3) are computed

with:

S12 -S21- 2h 1  6 -v 2h2  rh

2h O 2 2h2 oq h

S13 = S31 = h3 a(w ) + h,0 (Iu

2h 0 h3 I 2h 3 o\h,

S23 = S32 = h3~ a h 2 a

2h, kh2 2h3 02j;

W23= W32= 30 (w) h2_ 9
W1= 2 a77 h3)2h3 a p(h

For the flat plate, where h, = h2 = h3 = 1, the compressible formulation of the

Q-criterion reduces to the incompressible equivalent. For the circular cone, Q is

computed with

Q av Ou Ov O + W\ (B4

-?7 +FP5 r ) (E))

With this helpful tool at hand, it is still important to scan interesting amplitude

levels during post-processing. Exemplary, Figure B.2 illustrates the difference of dif-

ferent iso-surfaces identified with the Q-criterion. Based on the contour level different

conclusions about the flow stability behavior can be drawn-while in Figure B.2a the

flow does not appear to have any significant vortex interactions, Figure B.2b shows
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(a) Q =10. (b) Q =500.

Figure B.2: Example of flow structures identified by the Q-criterion for flow over a
cone. Ma = 7.95, Re = 3,333,333, T = 53.35K.

a confinement of vortical structures which is an indication for a strong nonlinear

behavior.

The advantages of vortex identification through the Q-criterion in comparison

with vorticity becomes obvious when looking at Figure B.3. Here, the Q-criterion is

compared with streamwise vorticity (w), wall-normal vorticity (w,), spanwise vor-

ticity (w), and total vorticity (wt). All iso-surfaces are built at the same level. The

streamwise vorticity mainly identifies the shear layer in between the vortical struc-

tures identified by the Q-criterion. The vorticity contours of spanwise and total

vorticity incorporate both shear and rotation making it harder to identify vortical

structures through vorticity due to a present shear layer in vicinity of the boundary

layer edge. The wall-normal vorticity (wy = 10) in Figure B.3b resembles more struc-

tures identificd at a higher Q-iso-surface far downstream (Q = 500 in Figure B.2b).

Comparing the terms for calculating both quantities allows for the conclusion that

both, the change of the w-velocity in streamwise direction and the spanwise change in

u-velocity gain importance far downstream. Because their difference is small (small

Wy) but their product large (high Q), it is assumed that both terms are in the same

order of magnitude and therefore equally important.
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(a) streamwise vorticity w,. (b) wall-normal vorticity w.

(c) spanwise vorticity w,. (d) total vorticity wt.

Figure B.3: Comparison of flow structures identified by the Q-criterion (Q = 10) and
by vorticity (wi = 10). Ma = 7.95, Re = 3,333,333, T = 53.35K.

B.4 Displacement thickness

Pruett (1993) derives a formula for the displacement thickness of axisymmetric bodies.

It is our understanding that when taking the limit of R to infinity, the compressible

formulation for a flat-plate geometry is recovered. Therefore, the compressible dis-

placement thickness as in Schlichting & Gersten (2001)'instead of the formulation

suggested by Pruett (1993) is used.
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Appendix C: Computational Parameters

The acronyms to identify the different simulations are composed in Table C.1.

Validation Simulation to compare base-flow properties
LST Small-amplitude simulation to compare with LST

PULSE simulation of a pulsed disturbance
OB1 Oblique breakdown of first-mode waves
OB2 Oblique breakdown of second-mode waves
OS1 Oblique subharmonic resonance of first-mode waves

OSiS Oblique subharmonic resonance of first-mode waves
with a forced steady streamwise vortex mode

OS2 Oblique subharmonic resonance of second-mode waves
OS2S Oblique subharmonic resonance of second-mode waves

with a forced steady streamwise vortex mode

OFI Oblique fundamental resonance of first-mode waves
OFIS Oblique fundamental resonance of first-mode waves

with a forced steady streamwise vortex mode
OF2 Oblique fundamental resonance of second-mode waves

OF2S Oblique fundamental resonance of second-mode waves
with a forced steady streamwise vortex mode

2DSV simulation of two-dimensional waves with a
steady streamwise vortex mode forced

FB1 Fundamental breakdown (K-type) of first-mode secondary waves
FB1S Fundamental breakdown (K-type) involving first-mode

secondary waves and a perturbed steady streamwise vortex mode
FB2 Fundamental breakdown (K-type) involving second-mode

secondary waves
SB1 Subharmonic breakdown (N-/H-type) of first-mode secondary waves

SB1S Subharmonic breakdown (N-/H-type) involving first-mode
secondary waves and a perturbed steady streamwise vortex mode

RLST simulation of small-amplitude regular disturbance waves
ROB Oblique breakdown of regular disturbance waves

Table C.1: Acronyms.
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Validation LST 0B2 0B2

dx. 101 6.38828 6.38828 6.38828 6.38828
dy. 105  9 9 9 9
dz. 103 - 4.425923 2.623749 2.623749
dt 105 1.12340208 1.12340208 1.12340208 1.12340208

n, 1130 1130 1130 1130

ny 300 300 300 300
n- 3 9 9

Xin 0.2724355 0.2724355 0.2724355 0.2724355
XOUt 0.993673 0.993673 0.993673 0.993673
Yequi 0.011 0.011 0.011 0.011

domain height 0.10125 0.10125 0.10125 0.10125

Re 4,790,000 4,790,000 4,790,000 4,790,000
Ma 6.8 6.8 6.8 6.8

TO[K] 71 71 71 71

Fpim" 10 8 4 8 8
fprim - 60 20 20

F5," -105  - - -

%p,sec --

Ap. im[%] 0.001 0.001 1 5
As,c[%]

Asted[%] - - - -

Table C.2: Computational parameter. Flat plate.
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OS2 OS2S OF2 OF2S OF2

dx. 104  6.38828 6.38828 6.38828 6.38828 6.38828
dy. 105  9 9 9 9 9
dz. 10' 2.632749 2.632749 2.623749 2.623749 2.632749
dt. 10' 1.12340208 1.12340208 1.12340208 1.12340208 1.12340208

nx 1130 1130 1130 1130 1130
ny 300 300 300 300 300

n, 9 9 9 9 9

Xin 0.2724355 0.2724355 0.2724355 0.2724355 0.2724355
XOUt 0.993673 0.993673 0.993673 0.993673 0.993673

Yequi 0.011 0.011 0.011 0.011 0.011

domain height 0.10125 0.10125 0.10125 0.10125 0.10125

Re 4,790,000 4,790,000 4,790,000 4,790,000 4,790,000
Ma 6.8 6.8 6.8 6.8 6.8

T.[K] 71 71 71 71 71

Fpr,-m- 10 8 8 8 8 8
Tprim 20 20 20 20 20

F, - 105  4 4 8 8 8
x 36 36 36 36 36

Aprim[%] 5 2 5 1 1

A,ec[%) 5 2 5 1 1
AstT CCy[%]a 1 F 1

Table C.3: Computational parameter. Flat plate.
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FB1 FBIS FB1S SB1 SB1S

dx. 104  6.38828 6.38828 6.38828 6.38828 6.38828

dy- 105  9 9 9 9 9
dz- 103 0.5532221 0.5532221 0.5532221 1.105355 1.105355
dt • 105  1.12340208 1.12340208 1.12340208 1.12340208 1.12340208

n, 1130 1130 1130 1130 1130
ny 300 300 300 300 300

n, 9 9 9 9 9

Xi 0.2724355 0.2724355 0.2724355 0.2724355 0.2724355
XOUt 0.993673 0.993673 0.993673 0.993673 0.993673

Yequi 0.011 0.011 0.011 0.011 0.011
domain height 0.10125 0.10125 0.10125 0.10125 0.10125

Re 4,790,000 4,790,000 4,790,000 4,790,000 4,790,000
Ma 6.8 6.8 6.8 6.8 6.8

T.[K] 71 71 71 71 71

Fprim. 1O 8 8 8 8 8
TJprim 0 0 0 0 0

Fsc_ 105  8 8 8 4 4
q/sec 60 60 60 60 60

Aprim[%] 5 5 5 5 5
A.,c[%] 0.001 0.001 0.001 0.01 0.01

A ,d_[%] -1 5 1 1

Table C.4: Computational parameter. Flat plate.
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LST LST OB2 0B2 OB2

dx. 104  6.38828 6.38828 6.38828 6.38828 6.38828
dy. 105  3 3 3 3 3
do- 102 - 13.33305 7.9296 7.9296 7.9296
dt. 10' 1.12340208 1.12340208 1.12340208 1.12340208 1.12340208

n, 1130 1130 1130 1130 1130
ny 600 600 600 600 600
n, 3 9 9 9

R,j,. 102 3.32 3.32 3.32 3.32 3.32
Xin 0.2724355 0.2724355 0.2724355 0.2724355 0.501136
XOUt 0.993673 0.993673 0.993673 0.993673 1.222373

Yequi 0.012 0.012 0.012 0.012 0.012
domain height 0.09558 0.09558 0.09558 0.09558 0.09558

Re 4,790,000 4,790,000 4,790,000 4,790,000 4,790,000
Ma 6.8 6.8 6.8 6.8 6.8

T.[K] 71 71 71 71 71

Fpr,m" 105  8 4 8 8 8
q/prim 0 60 20 20 20

Fec. 10 5  
-- -

Iisec  - - - -

Aprim[%] 0.001 0.001 1 5 5

Ateaojy[%] ....

Table C.5: Computational parameter. Cylinder.
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OS2 OS2S OF2 OF2S

dx- 10' 6.38828 6.38828 6.38828 6.38828
dy. 105  3 3 3 3
d p. 102 7.9296 7.9296 7.9296 7.9296
dt. 1or 1.12340208 1.12340208 1.12340208 1.12340208

n, 1130 1130 1130 1130
ny 600 600 600 600
n, 9 9 9 9

R,n • 102 3.32 3.32 3.32 3.32
xin 0.501136 0.501136 0.2724355 0.2724355

XO,,t 1.222373 1.222373 0.993673 0.993673

Yequi 0.012 0.012 0.012 0.012

domain height 0.09558 0.09558 0.09558 0.09558

Re 4,790,000 4,790,000 4,790,000 4,790,000
Ma 6.8 6.8 6.8 6.8

Too[K] 71 71 71 71

Fpr,im, 105 8 8 8 8

41prim 20 20 20 20
F,c" 105  4 4 8 8

Tsec 36 36 36 36

Aprim[%] 2 2 2 2

As,ec[%] 2 2 2 2
Asteady[%] - 1 - 1

Table C.6: Computational parameter. Cylinder.
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FBI FB1S SB1 SB1S

dx. 10' 6.38828 6.38828 6.38828 6.38828
dy. 105  3 3 3 3
dw- 102 1.6663 1.6663 3.332625 3.332625
dt. 0 1.12340208 1.12340208 1.12340208 1.12340208

n, 1130 1130 1130 1130
ny 600 600 600 600
n, 9 9 9 9

Rin"- 102 3.32 3.32 3.32 3.32
Xin 0.501136 0.501136 0.2724355 0.2724355
X.ot 1.222373 1.222373 0.993673 0.993673

Yequi 0.012 0.012 0.012 0.012
domain height 0.09558 0.09558 0.09558 0.09558

Re 4,790,000 4,790,000 4,790,000 4,790,000
Ma 6.8 6.8 6.8 6.8

T[K] 71 71 71 71

Fpr,m" 105  8 8 8 8
pri,m 0 0 0 0

Fsec 105  8 8 4 4
ifsec 60 60 60 60

Apr,m[%] 5 5 5 5
A,ec[%] 0.001 0.001 0.001 0.001

Asteady [%] - 1 - I

Table C.7: Computational parameter. Cylinder.
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LST LST/PULSE OB1 OB2

dx. 104  6.38828 6.38828 6.38828 1.59707
dy. 105  3 3 3 2
d- 102 - various 3.332624 0.6871746
dt. 105  1.12340208 1.12340208 1.12340208 0.561701

nx 1130 1130 1130 2925
ny 261 261 261 385

n, - various 9 65

Xin 0.2724355 0.2724355 0.2724355 0.2724355
xoUt 0.993673 0.993673 0.993673 0.993673
Yequti 0.005864 0.005864 0.005864 0.005864

domain height 0.015925 0.015925 0.015925 0.015925

Re 3,333,333 3,333,333 3,333,333 3,333,333
Ma 7.95 7.95 7.95 7.95

T.[K] 53.35 53.35 53.35 53.35

Fri,n - 105 11.7 11.7 4.9 11.7
Tprim 0 various 60 20

Fsec" 10 5  
- - -

Tsec _

Aprim[ %] various various 1
Asc[%]

Table C.8: Computational parameter. Sharp cone.
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OS2 OS2S OF2 OF2S

dx. 104  6.38828 6.38828 6.38828 1.59707
dy. 105  3 3 3 2
dW. 102 1.465972 1.465972 5.497396 0.6225228
dt- 105 1.12340208 1.12340208 1.12340208 0.561701

nx 1130 1130 1130 2925
ny 261 261 261 385

n, 31 31 9 65

Xin 0.2724355 0.2724355 0.2724355 0.2724355
xoUt 0.993673 0.993673 0.993673 0.993673

Yequi 0.005864 0.005864 0.005864 0.005864
domain height 0.015925 0.015925 0.015925 0.015925

Re 3,333,333 3,333,333 3,333,333 3,333,333
Ma 7.95 7.95 7.95 7.95

T.[K] 53.35 53.35 53.35 53.35

Fprim" 10 5  11.7 9.8 1.17 9.8
qfprim 20 20 20 20

F, . 105 5.85 4.9 1.17 9.8
'sec 36 36 36 36

Aptm[% ]  1 1 1 0.3
A,.,[%] 1 1 various 0.3

Astea y [%J - 1 - 0.3

Table C.9: Computational parameter. Sharp cone.
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2DSV 2DSV FB1 FB1S

dx. 104  6.38828 6.38828 6.38828 6.38828
dy. 105  3 3 3 3
d o- 102  5.497396 1.110864 1.249612 0.3332298
dt. 105  1.12340208 1.12340208 1.12340208 1.12340208

nx 1130 1130 1130 1130
ny 261 261 261 261

n, 9 9 9 31

Xin 0.2724355 0.2724355 0.2724355 0.2724355
XOUt 0.993673 0.993673 0.993673 0.993673

Yequi 0.005864 0.005864 0.005864 0.005864
domain height 0.015925 0.015925 0.015925 0.015925

Re 3,333,333 3,333,333 3,333,333 3,333,333
Ma 7.95 7.95 7.95 7.95

T.[K] 53.35 53.35 53.35 53.35

Fp-m. 10" 11.7 11.7 9.8 9.8
qIprim 0 0 0 0

Fsec" 105 0 0 9.8 9.8
% 20 60 60 60

Ap,im[%] 1 1 1 1
As- 0.001 0.001

Asteady [%] various various - 1

Table C.10: Computational parameter. Sharp cone.
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FB2 FB1 SB1 SB1S

dx. 10' 2.129427 2.129427 6.38828 6.38828
dy. 10 2 2 3 3
d o- 102 4.980182 2.310435 3.332625 3.332625
dt. 105 0.3229781 0.3229781 1.12340208 1.12340208

n, 3745 3745 1130 1130
ny 440 440 261 261

n, 9 9 9 9

Xin 0.2724355 0.2724355 0.2724355 0.2724355
XOUt 0.993673 0.993673 0.993673 0.993673
Yequi 0.005864 0.005864 0.005864 0.005864

domain height 0.015925 0.015925 0.015925 0.015925

Re 3,333,333 3,333,333 3,333,333 3,333,333
Ma 7.95 7.95 7.95 7.95

T. [K] 53.35 53.35 53.35 53.35

Fp,, - 105 9.8 9.8 9.8 9.8
qjprim 0 0 0 0

Fsec" 105 9.8 9.8 4.9 4.9
xec 20 43 60 60

Aprim[%] 1 1 1 1
A,eC[%] 0.001 0.001 0.001 0.001

Asteady [%] - - - 1

Table C. 11: Computational parameter. Sharp cone.



216

Validation Validation PULSE OB1 OB2

dx •04 6.38828 6.38828 6.38828 6.38828 6.38828
dy. 105  2 3 3 3 3
dto 102 _ _ - 5.497396 1.575702 5.497396
dt 102 1.12340208 1.12340208 1.12340208 1.12340208 1.12340208

n, 1330 1330 1330 1330 1330

ny 340 296 296 296 296
nzI - 9 9 9

Xi 0.1672013 0.271137 0.271137 0.271137 0.271137
XO,Ut 1.016203 1.100975 1.100975 1.100975 1.100975

Yequi 0.0036 0.0065 0.0065 0.0065 0.0065

domain height 0.01638 0.015924 0.015924 0.015924 0.015924

Re 8,566,826 3,333,333 3,333,333 3,333,333 3,333,333
Ma 7.99 7.95 7.95 7.95 7.95

Too[K] 54.47 53.35 53.35 53.35 53.35

Fpr,,m_ 105  
- - 11.7 4.9 11.7

prim - various 70 20
Fec _ 105 1 __ _ _ _1_ __ _ _ _ _ _ _

Sec - -

Aim[%] - 0.001 1 1

A b,lc[%] - .

Table C.12: Computational parameter. Blunt cone (RN = 0.15").
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OS1 OS1S OS2 OS2S

dx. 10' 6.38828 6.38828 6.38828 6.38828
dy. 105 3 3 3 3
d_ _- 10' 1.575702 1.575702 4.980182 4.980182
dt. 105 1.12340208 1.12340208 1.12340208 1.12340208

n, 1330 1330 1330 1130n. 296 296 296 261

n, 9 9 9 9

Xin 0.271137 0.271137 0.271137 0.271137
XOUt 1.100975 1.100975 1.100975 1.100975

Yequ 0.0065 0.0065 0.0065 0.0065
domain height 0.015924 0.015924 0.015924 0.015924

Re 3,333,333 3,333,333 3,333,333 3,333,333
Ma 7.95 7.95 7.95 7.95

T.0[K] 53.35 53.35 53.35 53.35

Fprim. 105 4.9 4.9 9.8 9.8
Tprim 70 70 20 20

Fsec- 105 2.45 2.45 4.9 4.9
'P sec 80 80 36 36

Aprim[% 1 1 1 1
A,e,[%] 1 1 1 1

Asteay[%] - -- 1

Table C.13: Computational parameter. Blunt cone (RN = 0.15").
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OF1 OF1S OF2 OF2S FBI

dx. 10' 6.38828 6.38828 6.38828 6.38828 6.38828
dy. 105  3 3 3 3 3
d o- 102 1.575702 1.575702 4.980182 4.980182 2.319367
dt • 105 1.12340208 1.12340208 1.12340208 1.12340208 1.12340208

nx 1330 1330 1330 1330 1330
ny 296 296 296 296 296

n, 9 9 9 9 9

Xin 0.271137 0.271137 0.271137 0.271137 0.271137
XOt 1.100975 1.100975 1.100975 1.100975 1.100975

Yequi 0.0065 0.0065 0.0065 0.0065 0.0065

domain height 0.015924 0.015924 0.015924 0.015924 0.015924

Re 3,333,333 3,333,333 3,333,333 3,333,333 3,333,333
Ma 7.95 7.95 7.95 7.95 7.95

T.[K] 53.35 53.35 53.35 53.35 53.35

Fp,im- 105 4.9 4.9 9.8 9.8 9.8
Tprim 70 70 20 20 0

Fec- 105 4.9 4.9 9.8 9.8 9.8
q__ec 80 80 36 36 41

Aprim[%] 1 1 1 1 1
A,c[%] 1 1 1 1 0.001

Asteady [%] 1 - 1

Table C.14: Computational parameter. Blunt cone (RN = 0.15").
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FBlS FBI FB1S SB1 SBIS

dx. 10' 6.38828 6.38828 6.38828 6.38828 6.38828
dy. 105  3 3 3 3 3
d .102  1.236996 1.164051 1.164051 1.332919 1.332919
dt 105  1.12340208 1.12340208 1.12340208 1.12340208 1.12340208

n, 1330 1330 1330 1330 1330
n. 296 296 296 296 296

n, 16 9 9 16 16

Xin 0.271137 0.271137 0.271137 0.271137 0.271137

XOUt 1.100975 1.100975 1.100975 1.100975 1.100975
Yequi 0.0065 0.0065 0.0065 0.0065 0.0065

domain height 0.015924 0.015924 0.015924 0.015924 0.015924

Re 3,333,333 3,333,333 3,333,333 3,333,333 3,333,333
Ma 7.95 7.95 7.95 7.95 7.95

T-[K] 53.35 53.35 53.35 53.35 53.35

Fpi, l06 9.8 9.8 9.8 9.8 9.8
Tprim 0 0 0 0 0

F,I - 101 9.8 9.8 9.8 4.9 4.9
41e 41 60 60 60 60

Aprim [% 1 1 1 1 1
Asec[%] 0.001 0.001 0.001 0.001 0.001

Asteady [%]  1 - 1 - 1

Table C. 15: Computational parameter. Blunt cone (RN = 0.15").
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Validation PULSE OB1 OB1

dx _ 104  6.38828 12.77656 6.38828 12.77656
dy. 104  1 1 1 1
d p- 102 - 5.497396 2.383072 5.55732
dt. 105  3.370206 3.370206 1.12340208 1.12340208

nx 827 599 1200 599
ny 125 157 157 157
n- 9 9 9

Xin_ 0.193904 0.2947638 0.2947638 0.2947638
XOt • 0.721575 1.058801 1.058801 1.058801

Yequi 0.0 0.0 0.0 0.0
domain height 0.023977 0.038948 0.038948 0.038948

Re 3,333,333 3,333,333 3,333,333 3,333,333
Ma 7.95 7.95 7.95 7.95

TO[K] 53.35 53.35 53.35 53.35

Fp,i-105 various 4.9 3.625
Pprim various 55 52

F, c10 5  
- I- -

Isec- --

Aprim[% ] 0.001 5 5
Asec[%]

Asteady[%]

Table C.16: Computational parameter. Blunt cone (RN = 0.7").
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LST ROB

dx. 10' 6.38828 6.38828
dy 105  5 5
d o- 102 4.980182 various
dt. 105  1.12340208 1.12340208

nx 1300 1300
ny 325 325
n, 9 various

Xin 0.2362447 0.2362447
XOUt 1.066082 1.066082

Yequi 0.012 0.012
domain height 0.028702 0.028702

Re 3,333,333 3,333,333
Ma 7.95 7.95

T. [K] 53.35 53.35

F-,n _ 105 3.625 3.625
irprim 60 60

F,,-_10 5  -

TIisec-

Aprim[%I - various
As.,.[%] -

Table C.17: Computational parameter. Blunt cone (RN = 0.7").
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CFUND 1 CFUND 2 CFUND 3
Flow properties:
Re1  I/mi 6.6E6 6.6E6 6.6E6
Ma [-] 2.00 2.00 2.00
T*o [K] 160.00 160.00 160.00
Pr [-] 0.71 0.71 0.71

[-] 1.40 1.40 1.40
Forcing properties:
f* [kHz] 20.00 20.00 20.00

A3) [-] 1.OE - 7 Mayer et al. (2007) Mayer et al. (2007)

0(f3) [-] 0.00 figure 5.7b figure 5.7b
Domain size:
X[- 0.020 0.020 0.020
XL [-] 0.097 0.172 0.172
YH [-] 0.035 0.035 0.035
Zw[- 0.063 0.063 0.063
Forcing location:
xI - 0.029 0.029 0.029
X2 [-] 0038 0.038 0.038

Buffer domain:
X3[- 0.069 0.142 0.142
Grid size:
n[-] 163 318 318
n[-] 651 651 651
n[-] 161 161 81
Grid resolution:
At [-] 1.25E - 5 1.25E - 5 1.25E - 5
Ax (infl.) [-J 4.80E - 4 4.80E - 4 4.80E - 4
Ax (outfl.) [-] 4.80E - 4 4.80E - 4 4.80E - 4
Ay (wall) [-J 1.25E - 5 1.25E - 5 1.25E - 5
Ay (free) [-] 1.37E - 4 1.37E - 4 1.37E - 4

Table C.18: Parameters used for simulations of a flat-plate boundary layer at Mach
2.
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CFUND 4 CFUND 5
Flow properties:
Re1  [1/m] 6.6E6 6.6E6
Ma [-J 2.00 2.00
TI [K] 160.00 160.00
Pr [-] 0.71 0.71
K [-] 1.40 1.40
Forcing properties:
f* [kHz] 20.00 20.00
A()3) [-] Mayer et al. (2007) Mayer et al. (2007)

()[-] figure 5.7b figure 5.7b
Domain size:

o[- 0.020 0.020
XL [-] 0.172 0.181
YH [-] 0.035 0.035
zw[- 0.063 0.063
Forcing location:
X1 [-] 0.029 0.029
X2 [-] 0.038 0.038
Buffer domain:
X3[- 0.142 0.155
Grid size:
n[- 318 651
n[- 651 651
n,_[-] 81 161
Grid resolution:
At[-] 1.25E- 5 1.25E- 5
Ax (infl.) [-] 4.80E - 4 4.80E - 4
Ax (outfl.) [-] 4.80E - 4 1.20E - 4
Ay (wall) [-] 1.25E - 5 1.25E - 5
Ay (free) [-] 1.37E - 4 1.37E - 4

Table C.19: Parameters used for simulations of a flat-plate boundary layer at Mach
2.
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CSUB 1 CSUB 10
Flow properties:
Re1  [1/m] 6.6E6 6.6E6
Ma [-] 2.00 2.00
TI [K] 160.00 160.00
Pr [-] 0.71 0.71
K[-] 1.40 1.40
Forcing properties:
f [kHz] 20.00 20.00
A1  [-] Mayer & Fasel (2008) Mayer & Fasel (2008)

Op[- figure 5.7b figure 5.7b
f2 [kHz] 10.00 10.00

A 2  [-] 5.OE - 6 5.OE - 6
AO 2 D / [7r 0.00 -0.30
Domain size:
Xo 0.020 0.020
XL [-1 0.106 0.172
Y[-1 0.024 0.035
ZW [-] 0.063 0.063
Forcing location:
Xl - 0.029 0.029

X2 []0.038 0.038

Buffer domain:
X3 [- 0.142
Grid size:
n[- 181 318
n[- 451 651
nz [- 161 161
Grid resolution:
At [-] 1.25E - 5 1.25E - 5
Ax (infl.) [-] 4.80E - 4 4.80E - 4
Ax (outfl.) [-] 4.80E - 4 4.80E - 4
Ay (wall) [-] 1.25E - 5 1.25E - 5
Ay (free) [-] 1.37E - 4 1.37E - 4

Table C.20: Parameters used for simulations of a flat-plate boundary layer at Mach
2. See table 5.2 and table 5.3 for CSUB 2-9.
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